Article

Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle.

Department of Neurology, Washington University, St. Louis, MO 63110, USA.
Science (Impact Factor: 31.48). 09/2009; 326(5955):1005-7. DOI: 10.1126/science.1180962
Source: PubMed

ABSTRACT Amyloid-beta (Abeta) accumulation in the brain extracellular space is a hallmark of Alzheimer's disease. The factors regulating this process are only partly understood. Abeta aggregation is a concentration-dependent process that is likely responsive to changes in brain interstitial fluid (ISF) levels of Abeta. Using in vivo microdialysis in mice, we found that the amount of ISF Abeta correlated with wakefulness. The amount of ISF Abeta also significantly increased during acute sleep deprivation and during orexin infusion, but decreased with infusion of a dual orexin receptor antagonist. Chronic sleep restriction significantly increased, and a dual orexin receptor antagonist decreased, Abeta plaque formation in amyloid precursor protein transgenic mice. Thus, the sleep-wake cycle and orexin may play a role in the pathogenesis of Alzheimer's disease.

1 Follower
 · 
265 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disturbances in the sleep-wake cycle and circadian rhythms are common symptoms of Alzheimer Disease (AD), and they have generally been considered as late consequences of the neurodegenerative processes. Recent evidence demonstrates that sleep-wake and circadian disruption often occur early in the course of the disease and may even precede the development of cognitive symptoms. Furthermore, the sleep-wake cycle appears to regulate levels of the pathogenic amyloid-beta peptide in the brain, and manipulating sleep can influence AD-related pathology in mouse models via multiple mechanisms. Finally, the circadian clock system, which controls the sleep-wake cycle and other diurnal oscillations in mice and humans, may also have a role in the neurodegenerative process. In this review, we examine the current literature related to the mechanisms by which sleep and circadian rhythms might impact AD pathogenesis, and we discuss potential therapeutic strategies targeting these systems for the prevention of AD.
    Experimental and Molecular Medicine 03/2015; 47(3):e148. DOI:10.1038/emm.2014.121 · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disturbance of the circadian system, manifested as disrupted daily rhythms of physiologic parameters such as sleep, activity, and hormone secretion, has long been observed as a symptom of several neurodegenerative diseases, including Alzheimer disease. Circadian abnormalities have generally been considered consequences of the neurodegeneration. Recent evidence suggests, however, that circadian disruption might actually contribute to the neurodegenerative process, and thus might be a modifiable cause of neural injury. Herein we will review the evidence implicating circadian rhythms disturbances and clock gene dysfunction in neurodegeneration, with an emphasis on future research directions and potential therapeutic implications for neurodegenerative diseases.
    Frontiers in Pharmacology 02/2015; 6:29. DOI:10.3389/fphar.2015.00029

Full-text (4 Sources)

Download
35 Downloads
Available from
May 15, 2014