Article

Close mimicry of lung surfactant protein B by "clicked" dimers of helical, cationic peptoids.

Department of Chemistry, Northwestern University, 2145 N. Sheridan Road, Evanston, IL 60208-3100, USA.
Biopolymers (Impact Factor: 2.88). 09/2009; 92(6):538-53. DOI: 10.1002/bip.21309
Source: PubMed

ABSTRACT A family of peptoid dimers developed to mimic SP-B is presented, where two amphipathic, cationic helices are linked by an achiral octameric chain. SP-B is a vital therapeutic protein in lung surfactant replacement therapy, but its large-scale isolation or chemical synthesis is impractical. Enhanced biomimicry of SP-B's disulfide-bonded structure has been previously attempted via disulfide-mediated dimerization of SP-B(1-25) and other peptide mimics, which improved surface activity relative to the monomers. Herein, the effects of disulfide- or "click"-mediated (1,3-dipolar cycloaddition) dimerization, as well as linker chemistry, on the lipid-associated surfactant activity of a peptoid monomer are described. Results revealed that the 'clicked' peptoid dimer enhanced in vitro surface activity in a DPPC:POPG:PA lipid film relative to its disulfide-bonded and monomeric counterparts in both surface balance and pulsating bubble surfactometry studies. On the pulsating bubble surfactometer, the film containing the "clicked" peptoid dimer outperformed all presented peptoid monomers and dimers, and two SP-B derived peptides, attaining an adsorbed surface tension of 22 mN m(-1), and maximum and minimum cycling values of 42 mN m(-1) and near-zero, respectively.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung surfactant protein B (SP-B) is required for proper surface activity of pulmonary surfactant. In model lung surfactant lipid systems composed of saturated and unsaturated lipids, the unsaturated lipids are removed from the film at high compression. It is thought that SP-B helps anchor these lipids closely to the monolayer in three-dimensional cylindrical structures termed "nanosilos" seen by atomic force microscopy imaging of deposited monolayers at high surface pressures. Here we explore the role of the SP-B NH(2) terminus in the formation and stability of these cylindrical structures, specifically the distribution of lipid stack height, width, and density with four SP-B truncation peptides: SP-B 1-25, SP-B 9-25, SP-B 11-25, and SP-B 1-25Nflex (prolines 2 and 4 substituted with alanine). The first nine amino acids, termed the insertion sequence and the interface seeking tryptophan residue 9, are shown to stabilize the formation of nanosilos while an increase in the insertion sequence flexibility (SP-B 1-25Nflex) may improve peptide functionality. This provides a functional understanding of the insertion sequence beyond anchoring the protein to the two-dimensional membrane lining the lung, as it also stabilizes formation of nanosilos, creating reversible repositories for fluid lipids at high compression. In lavaged, surfactant-deficient rats, instillation of a mixture of SP-B 1-25 (as a monomer or dimer) and synthetic lung lavage lipids quickly improved oxygenation and dynamic compliance, whereas SP-B 11-25 surfactants showed oxygenation and dynamic compliance values similar to that of lipids alone, demonstrating a positive correlation between formation of stable, but reversible, nanosilos and in vivo efficacy.
    AJP Lung Cellular and Molecular Physiology 12/2009; 298(3):L335-47. · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of beta-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers, inspired by the post-translational modifications found in SP-C, affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers.
    Journal of the American Chemical Society 06/2010; 132(23):7957-67. · 10.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines which contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox.
    Biopolymers 01/2011; 96(5):604-16. · 2.88 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
Jun 4, 2014