Close mimicry of lung surfactant protein B by ���clicked��� dimers of helical, cationic peptoids

Department of Chemistry, Northwestern University, 2145 N. Sheridan Road, Evanston, IL 60208-3100, USA.
Biopolymers (Impact Factor: 2.29). 01/2009; 92(6):538-53. DOI: 10.1002/bip.21309
Source: PubMed

ABSTRACT A family of peptoid dimers developed to mimic SP-B is presented, where two amphipathic, cationic helices are linked by an achiral octameric chain. SP-B is a vital therapeutic protein in lung surfactant replacement therapy, but its large-scale isolation or chemical synthesis is impractical. Enhanced biomimicry of SP-B's disulfide-bonded structure has been previously attempted via disulfide-mediated dimerization of SP-B(1-25) and other peptide mimics, which improved surface activity relative to the monomers. Herein, the effects of disulfide- or "click"-mediated (1,3-dipolar cycloaddition) dimerization, as well as linker chemistry, on the lipid-associated surfactant activity of a peptoid monomer are described. Results revealed that the 'clicked' peptoid dimer enhanced in vitro surface activity in a DPPC:POPG:PA lipid film relative to its disulfide-bonded and monomeric counterparts in both surface balance and pulsating bubble surfactometry studies. On the pulsating bubble surfactometer, the film containing the "clicked" peptoid dimer outperformed all presented peptoid monomers and dimers, and two SP-B derived peptides, attaining an adsorbed surface tension of 22 mN m(-1), and maximum and minimum cycling values of 42 mN m(-1) and near-zero, respectively.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Multimeric interactions that occur in biology provide impetus for chemists to explore new types of synthetic multivalent ligands that alter cellular functions by mechanisms inaccessible to natural substances. While many different molecules such as peptides, antibody fragments, carbohydrates and organic moieties have been used in developing multimeric ligands, it is worth exploring other important molecular types that have hardly been tested in developing multimeric compounds. Peptoids are one such class of compounds with highly facile synthesis as well as much better biologically amenable qualities. Recently, we identified two HCC4017 lung cancer cell targeting peptoids. Here we explore the possibility of synthesizing multimers of these compounds completely through a solid phase synthesis approach. We have synthesized mini-libraries of homodimers, homotrimers and most importantly, heterodimers of our lung cancer specific compounds. The idea is to develop series of compounds that only differs by the linker portion, which is readily adjustable within the library. The purpose of this is to find the optimal distance between each monomeric unit of the multimer that allows them to perfectly interact with their individual biological targets displayed on the cell surface. Future screens of these minilibraries will identify the multimers with improved binding affinities.
    Biopolymers 01/2011; 96(5):567-77. DOI:10.1002/bip.21596 · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines which contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox.
    Biopolymers 01/2011; 96(5):604-16. DOI:10.1002/bip.21599 · 2.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bioinspired polymeric materials are attracting increasing attention due to significant advantages over their natural counterparts: the ability to precisely tune their structures over a broad range of chemical and physical properties, increased stability, and improved processability. Polypeptoids, a promising class of bioinspired polymer based on a N-substituted glycine backbone, have a number of unique properties that bridge the material gap between proteins and bulk polymers. Peptoids combine the sequence specificity of biopolymers with the simpler intra/intermolecular interactions and robustness of traditional synthetic polymers. They are highly designable because hundreds of chemically diverse side chains can be introduced from simple building blocks. Peptoid polymers can be prepared by two distinct synthetic techniques offering access to two material subclasses: (1) automated solid-phase synthesis which enables precision sequence control and near absolute monodispersity up to chain lengths of ∼50 monomers, and (2) a classical polymerization approach which allows access to higher molecular weights and larger-scale yields, but with less control over length and sequence. This combination of facile synthetic approaches makes polypeptoids a highly tunable, rapid polymer prototyping platform to investigate new materials that are intermediate between proteins and bulk polymers, in both their structure and their properties. In this paper, we review the methods to synthesize peptoid polymers and their applications in biomedicine and nanoscience, as both sequence-specific materials and as bulk polymers.
    ACS Nano 05/2013; 7(6). DOI:10.1021/nn4015714 · 12.03 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014