Article

Increase in gamma-globin mRNA content in human erythroid cells treated with angelicin analogs.

Department of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara, 74, 44100, Ferrara, Italy.
International journal of hematology (Impact Factor: 1.68). 09/2009; 90(3):318-27. DOI: 10.1007/s12185-009-0422-2
Source: PubMed

ABSTRACT The aim of the present study was to identify molecular analogs of angelicin (ANG) able to increase erythroid differentiation of K562 cells and expression of gamma-globin genes in human erythroid precursor cells, with low effects on apoptosis. ANG-like molecules are well-known photosensitizers largely used for their antiproliferative activity in the treatment of different skin diseases (i.e., psoriasis, vitiligo, eczema, and mycosis fungoides). To verify the activity of these derivatives, we employed three experimental cell systems: (1) the human leukemic K562 cell line, (2) K562 cell clones stably transfected with a pCCL construct carrying green-EGFP under the gamma-globin gene promoter, and (3) the two-phase liquid culture of human erythroid progenitors isolated from normal donors and beta-thalassemia patients. The results of our study suggest that trimethyl ANG is a powerful inducer of erythroid differentiation, compared with known inducers, such as ANG, cytosine arabinoside, mithramycin, and cisplatin. These data could have practical relevance, because pharmacologically mediated regulation of human gamma-globin gene expression, with the consequent induction of fetal hemoglobin, is considered a potential therapeutic approach in hematological disorders including beta-thalassemia and sickle cell anemia.

0 Followers
 · 
201 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases.
    Hematology Research and Reviews 02/2015; 6:69-85. DOI:10.2147/JBM.S46256
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin, an inhibitor of mTOR activity, is a potent inducer of erythroid differentiation and fetal hemoglobin production in β-thalassemic patients. Mithramycin (MTH) was studied to see if this inducer of K562 differentiation also operates through inhibition of mTOR. We can conclude from the study that the mTOR pathway is among the major transcript classes affected by mithramycin-treatment in K562 cells and a sharp decrease of raptor protein production and p70S6 kinase is detectable in mithramycin treated K562 cells. The promoter sequence of the raptor gene contains several Sp1 binding sites which may explain its mechanism of action. We hypothesize that the G+C-selective DNA-binding drug mithramycin is able to interact with these sequences and to inhibit the binding of Sp1 to the raptor promoter due to the following results: (a) MTH strongly inhibits the interactions between Sp1 and Sp1-binding sites of the raptor promoter (studied by electrophoretic mobility shift assays, EMSA); (b) MTH strongly reduces the recruitment of Sp1 transcription factor to the raptor promoter in intact K562 cells (studied by chromatin immunoprecipitation experiments, ChIP); (c) Sp1 decoy oligonucleotides are able to specifically inhibit raptor mRNA accumulation in K562 cells. In conclusion, raptor gene expression is involved in mithramycin-mediated induction of erythroid differentiation of K562 cells and one of its mechanism of action is the inhibition of Sp1 binding to the raptor promoter. Copyright © 2014. Published by Elsevier Ltd.
    Pharmacological Research 12/2014; 91. DOI:10.1016/j.phrs.2014.11.005 · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human gammaherpesviruses including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are important pathogens as they persist in the host and cause various malignancies. However, few antiviral drugs are available to efficiently control gammaherpesvirus replication. Here we identified the antiviral activity of angelicin against murine gammaherpesvirus 68 (MHV-68), genetically and biologically related to human gammaherpesviruses. Angelicin, a furocoumarin naturally occurring tricyclic aromatic compound, efficiently inhibited lytic replication of MHV-68 in a dose-dependent manner following the virus entry. The IC50 of angelicin antiviral activity was estimated to be 28.95 μM, while the CC50 of angelicin was higher than 2,600 μM. Furthermore, incubation with angelicin efficiently inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced lytic replication of human gammahepresviruses in both EBV- and KSHV-infected cells. Taken together, these results suggest that MHV-68 can be a useful tool to screen novel antiviral agents against human gammaherepsviruses and that angelicin may provide a lead structure for the development of antiviral drug against gammaherpesviruses.
    Antiviral research 07/2013; DOI:10.1016/j.antiviral.2013.07.009 · 3.43 Impact Factor