Article

Pulse mTOR inhibitor treatment effectively controls cyst growth but leads to severe parenchymal and glomerular hypertrophy in rat polycystic kidney disease.

Zurich Center for Integrative Human Physiology (ZIHP), Zürich, Switzerland.
AJP Renal Physiology (Impact Factor: 4.42). 09/2009; 297(6):F1597-605. DOI: 10.1152/ajprenal.00430.2009
Source: PubMed

ABSTRACT The efficacy of mammalian target of rapamycin (mTOR) inhibitors is currently tested in patients affected by autosomal dominant polycystic kidney disease. Treatment with mTOR inhibitors has been associated with numerous side effects. However, the renal-specific effect of mTOR inhibitor treatment cessation in polycystic kidney disease is currently unknown. Therefore, we compared pulse and continuous everolimus treatment in Han:SPRD rats. Four-week-old male heterozygous polycystic and wild-type rats were administered everolimus or vehicle by gavage feeding for 5 wk, followed by 7 wk without treatment, or continuously for 12 wk. Cessation of everolimus did not result in the appearance of renal cysts up to 7 wk postwithdrawal despite the reemergence of S6 kinase activity coupled with an overall increase in cell proliferation. Pulse everolimus treatment resulted in striking noncystic renal parenchymal enlargement and glomerular hypertrophy that was not associated with compromised kidney function. Both treatment regimens ameliorated kidney function, preserved the glomerular-tubular connection, and reduced proteinuria. Pulse treatment at an early age delays cyst development but leads to striking glomerular and parenchymal hypertrophy. Our data might have an impact when long-term treatment using mTOR inhibitors in patients with autosomal dominant polycystic kidney disease is being considered.

0 Bookmarks
 · 
47 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The improvement of imaging techniques over the years has contributed to the understanding of the natural history of autosomal dominant polycystic kidney disease, and facilitated the observation of its structural progression. Advances in molecular biology and genetics have made possible a greater understanding of the genetics, molecular, and cellular pathophysiologic mechanisms responsible for its development and have laid the foundation for the development of potential new therapies. Therapies targeting genetic mechanisms in ADPKD have inherent limitations. As a result, most experimental therapies at the present time are aimed at delaying the growth of the cysts and associated interstitial inflammation and fibrosis by targeting tubular epithelial cell proliferation and fluid secretion by the cystic epithelium. Several interventions affecting many of the signaling pathways disrupted in ADPKD have been effective in animal models and some are currently being tested in clinical trials.
    Current Hypertension Reviews 02/2013; 9(1):44-59.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal dominant polycystic kidney disease (ADPKD) is caused by loss-of-function mutations in either PKD1 or PKD2 genes, which encode polycystin-1 (TRPP1) and polycystin-2 (TRPP2), respectively. Increased activity of the mammalian target of rapamycin (mTOR) pathway has been shown in PKD1 mutants but is less documented for PKD2 mutants. Clinical trials using mTOR inhibitors were disappointing, while the AMP-activated kinase (AMPK) activator, metformin is not yet tested in patients. Here, we studied the mTOR activity and its upstream pathways in several human and mouse renal cell models with either siRNA or stable knockdown and with overexpression of TRPP2. Our data reveal for the first time differences between TRPP1 and TRPP2 deficiency. In contrast to TRPP1 deficiency, TRPP2-deficient cells did neither display excessive activation of the mTOR-kinase complex nor inhibition of AMPK activity, while ERK1/2 and Akt activity were similarly affected among TRPP1- and TRPP2-deficient cells. Furthermore, cell proliferation was more pronounced in TRPP1 than in TRPP2-deficient cells. Interestingly, combining low concentrations of rapamycin and metformin was more effective for inhibiting mTOR complex 1 activity in TRPP1-deficient cells than either drug alone. Our results demonstrate a synergistic effect of a combination of low concentrations of drugs suppressing the increased mTOR activity in TRPP1-deficient cells. This novel insight can be exploited in future clinical trials to optimize the efficiency and avoiding side effects of drugs in the treatment of ADPKD patients with PKD1 mutations. Furthermore, as TRPP2 deficiency by itself did not affect mTOR signaling, this may underlie the differences in phenotype, and genetic testing has to be considered for selecting patients for the ongoing trials.
    Pflügers Archiv - European Journal of Physiology 11/2013; · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis and is linked to cardiovascular disease and all-cause mortality in chronic kidney disease. FGF23 rises in patients with CKD stages 2-3, but in patients with autosomal dominant polycystic kidney disease, the increase of FGF23 precedes the first measurable decline in renal function. The mechanisms governing FGF23 production and effects in kidney disease are largely unknown. Here we studied the relation between FGF23 and mineral homeostasis in two animal models of PKD. Plasma FGF23 levels were increased 10-fold in 4-week-old cy/+ Han:SPRD rats, whereas plasma urea and creatinine concentrations were similar to controls. Plasma calcium and phosphate levels as well as TmP/GFR were similar in PKD and control rats at all time points examined. Expression and activity of renal phosphate transporters, the vitamin D3-metabolizing enzymes, and the FGF23 co-ligand Klotho in the kidney were similar in PKD and control rats through 8 weeks of age, indicating resistance to FGF23, although phosphorylation of the FGF receptor substrate 2α protein was enhanced. In the kidneys of rats with PKD, FGF23 mRNA was highly expressed and FGF23 protein was detected in cells lining renal cysts. FGF23 expression in bone and spleen was similar in control rats and rats with PKD. Similarly, in an inducible Pkd1 knockout mouse model, plasma FGF23 levels were elevated, FGF23 was expressed in kidneys, but renal phosphate excretion was normal. Thus, the polycystic kidney produces FGF23 but is resistant to its action.Kidney International advance online publication, 8 January 2014; doi:10.1038/ki.2013.526.
    Kidney International 01/2014; · 8.52 Impact Factor