The reversible developmental unipotency of germ cells in chicken.

Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
Reproduction (Impact Factor: 3.56). 09/2009; 139(1):113-9. DOI: 10.1530/REP-09-0265
Source: PubMed

ABSTRACT We recently developed bimodal germline chimera production approaches by transfer of primordial germ cells (PGCs) or embryonic germ cells (EGCs) into embryos and by transplantation of spermatogonial stem cells (SSCs) or germline stem cells (GSCs) into adult testes. This study was undertaken to investigate the reversible developmental unipotency of chicken germ cells using our established germline chimera production systems. First, we transferred freshly isolated SSCs from adult testis or in vitro cultured GSCs into stage X and stage 14-16 embryos, and we found that these transferred SSCs/GSCs could migrate to the recipient embryonic gonads. Of the 527 embryos that received SSCs or GSCs, 135 yielded hatchlings. Of 17 sexually mature males (35.3%), six were confirmed as germline chimeras through testcross analysis resulting in an average germline transmission efficiency of 1.3%. Second, PGCs/EGCs, germ cells isolated from embryonic gonads were transplanted into adult testes. The EGC transplantation induced germline transmission, whereas the PGC transplantation did not. The germline transmission efficiency was 12.5 fold higher (16.3 vs 1.3%) in EGC transplantation into testis (EGCs to adult testis) than that in SSC/GSC transfer into embryos (testicular germ cells to embryo stage). In conclusion, chicken germ cells from different developmental stages can (de)differentiate into gametes even after the germ cell developmental clock is set back or ahead. Use of germ cell reversible unipotency might improve the efficiency of germ cell-mediated germline transmission.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chicken was domesticated from Red Jungle Fowl over 8,000 years ago and became one of the major food sources worldwide. At present, the poultry industry is one of the largest industrial animal stocks in the world, and its economic scale is expanding significantly with increasing consumption. Additionally, since Aristotle used chicken eggs as a model to provide remarkable insights into how life begins, chickens have been used as invaluable and powerful experimental materials for studying embryo development, immune systems, biomedical processes, and hormonal regulation. Combined with advancements in efficient transgenic technology, avian models have become even more important than would have been expected.
    General and Comparative Endocrinology 12/2012; · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The management of captive avian breeding programs increasingly utilizes various artificial reproductive technologies, including in ovo sexing of embryos to adjust population sex ratios. Currently, however, no attention has been given to the loss of genetic diversity following sex-selective incubation, even with respect to individuals from critically endangered species. This project evaluated the possibility of using xenotransfer of embryonic gonadal germline stem cells (GGCs) for future reintroduction of their germplasm into the gene pool. We examined and compared the host gonad colonization of freshly isolated and 3 day (3d) cultured donor GGCs from chicken and 13 species of exotic embryos. Following 3d-culture of GGCs, there was a significant increase in the percentage of stem cell marker (SSEA-1, -3, -4) positive cells. However, the percentage of positive host gonads with chicken donor-derived cells decreased from 68% (fresh) to 22% (3d), while the percentage of exotic species donor-cells positive host gonads decreased from 61% (fresh) to 49% (3d-cultured). Donor GGCs from both chicken and exotic species were localized within the caudal endoderm, including the region encompassing the gonadal ridge by 16 hours post-injection. Furthermore, donor-derived cells isolated from stage 36 host embryos were antigenic for anti SSEA-1, VASA/DDX4 and EMA-1 antibodies, presumably indicating maintenance of stem cell identity. This study demonstrates that GGCs from multiple species can migrate to the gonadal region and maintain presumed stemness following xenotransfer into a chicken host embryo, suggesting that germline stem cell migration is highly conserved in birds.
    ZOOLOGICAL SCIENCE 06/2014; 31(6):360-8. · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Approximately 12.5% of all 9,920 extant bird species in the world are threatened with extinction, and yet conservation efforts through natural breeding of captive species continue to encounter difficulties. However, sperm cryopreservation and artificial insemination offer potential benefits over natural breeding, but their applicability is still limited in nondomestic species. In this study, we aimed to exploit the potential of germ cell xenotransplantation as alternative tool for preserving germplasm of endangered birds. The study was designed to investigate if transfer of either spermatogonia-enriched cell fraction (SEF) or crude testicular cell fraction (CTF) from adult Japanese quails (as a model for wild species) would result in recolonization of gamma-irradiated gonads of adult recipient chickens. One month after transplantation, 75% of recipients injected with SEF and 25% of recipients injected with CTF resumed spermatogenesis. However, it took more than three months for 33% of the negative controls to resume marginal production of sperm. Some SEF recipients produced more spermatozoa bearing head morphology compared with donor controls. DNA analysis using quail-specific primers did not detect donor's DNA in these recipients semen. However, six months after xenotrnsplantation, presence of quail germ cells was demonstrated by PCR and by immunohistochemistry in one rooster injected with SEF. These findings indicate that spermatogonia from adult quails were capable of colonizing immunocompetent testis of adult chickens but failed to produce sufficient sperm. Despite this limitation, the present approach represents a potential conservation tool that may be used to rescue germ cells of endangered adult male birds.
    Stem cells and development 10/2012; · 4.15 Impact Factor


Available from
May 19, 2014