Article

Safety and immunogenicity of inactivated, Vero cell culture-derived whole virus influenza A/H5N1 vaccine given alone or with aluminum hydroxide adjuvant in healthy adults.

Baylor College of Medicine Vaccine Research Center, Houston, TX 77030, USA.
Vaccine (Impact Factor: 3.49). 03/2009; 27(47):6642-8. DOI: 10.1016/j.vaccine.2009.03.015
Source: PubMed

ABSTRACT Dosage-sparing strategies, adjuvants and alternative substrates for vaccine production are being explored for influenza vaccine development. We assessed the safety and immunogenicity of a Vero cell culture-grown inactivated whole virus influenza A/H5N1 vaccine with or without aluminum hydroxide adjuvant [Al(OH)(3)] in healthy young adults. Vaccines were well tolerated, but injection site discomfort was more frequent in groups receiving Al(OH)(3). Dose-related increases in serum antibody levels were observed. Neutralizing antibody titers varied significantly when tested by two different laboratories. Al(OH)(3) did not enhance HAI or neutralizing antibody responses, and contributed to increased injection site pain. Because influenza antibody titers vary significantly between different laboratories, international standardization of assays is warranted.

1 Bookmark
 · 
55 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The threat of an outbreak of avian-origin influenza H7N9 and the devastating consequences that a pandemic could have on global population health and economies has mobilized programs of constant surveillance and the implementation of preemptive plans. Central to these plans is the production of prepandemic vaccines that can be rapidly deployed to minimize disease severity and deaths resulting from such an occurrence. In this article, we review current H7N9 vaccine strategies in place and the available technologies and options that can help accelerate vaccine production and increase dose-sparing capabilities to provide enough vaccines to cover the population. We also present possible means of reducing disease impact during the critical period after an outbreak occurs before a strain matched vaccine becomes available and consider the use of existing stockpiles and seed strains of phylogenetically related subtypes, alternate vaccination regimes and vaccine forms that induce cross-reactive immunity.
    Expert Review of Vaccines 07/2014; · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007) . Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of "total Al"assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al(+ 3) to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)(+ 2) and Al(H2O)6 (+ 3)] that after complexation with O2(•-), generate Al superoxides [Al(O2(•))](H2O5)](+ 2). Semireduced AlO2(•) radicals deplete mitochondrial Fe and promote generation of H2O2, O2 (• -) and OH(•). Thus, it is the Al(+ 3)-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances.
    Critical Reviews in Toxicology 10/2014; 44(S4):1-80. · 6.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The potential epidemiological human pandemic resulting from highly pathogenic avian influenza (HPAI) H5N1 has been studied extensively since the identification of the virus in the Guangdong province of China. The majority of research has focused on the unique and severe histopathological lesions induced by the virus. The severe pathological presentation of these infections has also prompted interest in identifying preventive and therapeutic approaches against HPAI. The potential severity of a HPAI pandemic and the efforts to identify effective intervention strategies have led to many novel discoveries in vaccine and antiviral development that are critically examined in this review.
    Journal of Biomedical Nanotechnology 09/2014; 10:2261-2294. · 7.58 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
May 23, 2014