Nanoscale Arrangement of Apoptotic Ligands Reveals a Demand for a Minimal Lateral Distance for Efficient Death Receptor Activation

Department of New Materials and Biosystems, Max-Planck-Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart, Germany.
Nano Letters (Impact Factor: 13.59). 09/2009; 9(12):4240-5. DOI: 10.1021/nl902429b
Source: PubMed

ABSTRACT Cellular apoptosis, the prototype of programmed cell death, can be induced by activation of so-called death receptors. Interestingly, soluble and membrane-bound members of death receptor ligands can differentially activate their receptors. Using the death receptor ligand tumor necrosis factor (TNF) presented on a surface in a nanoscaled pattern with spacings between 58 and 290 nm, we investigated its requirements for spatial arrangement and motility to efficiently activate TNF receptor (TNFR)1 and TNFR2 as well as its chimeras TNFR1-Fas and TNFR2-Fas. We show that the mere mechanical fixation of TNF is insufficient to efficiently activate TNFR2 that is responsive to only the membrane bound form of TNF but not its soluble form. Rather, an additional stabilization of TNFR2(-Fas) by cluster formation seems to be mandatory for efficient activation. In contrast, TNFR1(-Fas) is strongly activated by TNF spaced within up to 200 nm distances, whereas larger spacings of 290 nm fails completely. Furthermore, unlike for TNFR2(-Fas) no dose-response relationship to increasing distances of nanostructured ligands could be observed for TNFR1-(Fas), suggesting that compartmentalization of the cell membrane in confinement zones of approximately 200 nm regulates TNFR1 activation.

Download full-text


Available from: Tamás Haraszti, Jul 28, 2015
  • Source
    • "While the mechanism behind the effect of topography on cell function is not clearly understood, it is believed that it modulates cell attachment through contact guidance, and produces anisotropic stresses in the cell's cytoskeleton (Bettinger et al., 2009). Control over the nanotopography of scaffolds has been shown to influence cell shape (Kim et al., 2010a), adhesion, migration, proliferation (Ranzinger et al., 2009) and differentiation (Yang et al., 2011) and hence provides an additional degree of control in the design of biomaterials used to engineer functioning tissues. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Micro- and nanotechnologies have emerged as potentially effective fabrication tools for addressing the challenges faced in tissue engineering and drug delivery. The ability to control and manipulate polymeric biomaterials at the micron and nanometre scale with these fabrication techniques has allowed for the creation of controlled cellular environments, engineering of functional tissues and development of better drug delivery systems. In tissue engineering, micro- and nanotechnologies have enabled the recapitulation of the micro- and nanoscale detail of the cell's environment through controlling the surface chemistry and topography of materials, generating 3D cellular scaffolds and regulating cell-cell interactions. Furthermore, these technologies have led to advances in high-throughput screening (HTS), enabling rapid and efficient discovery of a library of materials and screening of drugs that induce cell-specific responses. In drug delivery, controlling the size and geometry of drug carriers with micro- and nanotechnologies have allowed for the modulation of parametres such as bioavailability, pharmacodynamics and cell-specific targeting. In this review, we introduce recent developments in micro- and nanoscale engineering of polymeric biomaterials, with an emphasis on lithographic techniques, and present an overview of their applications in tissue engineering, HTS and drug delivery. Copyright © 2012 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 01/2014; 8(1):1-14. DOI:10.1002/term.1494 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanomaterials composed of silver (Ag), copper-doped titanium dioxide (Cu-TiO2), and pure titanium dioxide (TiO2) have wide applications in consumer products such as cosmetics, electronic appliances, clothes, and industry materials such as solar cell. However, there are problems associated with the exposure of aquatic organisms in the ecosystem to such nanomaterials. In this study, we investigated the expression pattern of genes in zebrafish embryos after exposure to nanomaterials. We used several functional categories including apoptosis, endocytosis, immune response, and endoplasmic reticulum stress so on. A total of 314 (278 up-regulated and 36 down-regulated), 283 (129 up-regulated and 154 down-regulated), and 360 (198 up-regulated and 162 down-regulated) genes were differentially expressed in zebrafish embryos exposed to Ag, Cu-TiO2, and TiO2 NPs, respectively, with apoptosis being the function of the highest proportion of differentially expressed genes in all 3 NP exposures. Our data provide a basis for conducting further mechanistic studies of genes that are induced or suppressed upon exposure to NPs in zebrafish embryogenesis.
    Molecular and Cellular Toxicology 06/2013; 9(2). DOI:10.1007/s13273-013-0017-0 · 0.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell adhesion to extracellular matrices (ECM) is critical to many cellular processes including differentiation, proliferation, migration, and apoptosis. Alterations in adhesive mechanisms are central to the behavior of cells in pathological conditions including cancer, atherosclerosis, and defects in wound healing. Although significant progress has been made in identifying molecules involved in adhesion, the mechanisms that dictate the generation of strong adhesive forces remain poorly understood. Specifically, the role of nanoscale geometry of the adhesive interface in integrin recruitment and adhesion forces remains elusive due to limitations in the techniques available for engineering cell adhesion environments. The objective of this project was to analyze the role of nanoscale geometry in cell adhesion strengthening to ECM. Our central hypothesis was that adhesive interactions are regulated by integrin clusters whose recruitment is determined by the nanoscale geometry of the adhesive interface and whose heterogeneity in size, spacing, and orientation modulates adhesion strength. The objective of this project was accomplished by 1) developing an experimental technique capable of producing nanoscale patterns of proteins on surfaces for cell adhesion arrays, 2) assessing the regulation of integrin recruitment by geometry of the adhesive interface, and 3) determining the functional implications of adhesive interface geometry by systematically analyzing the adhesion strengthening response to nanoscale patterns of proteins. A printing technique was developed that patterns proteins into features as small as 90nm with high contrast and high reproducibility. Cell adhesion arrays were produced by directly immobilizing proteins into patterns on mixed-SAMs surfaces with a protein-resistant background. Colocalization analysis of integrin recruitment to FN patterns demonstrated a concentrating effect of bound integrins at pattern sizes with areas equivalent to small nascent focal adhesions. At adhesion areas below 333 × 333 nm2, the frequency of integrin recruitment events decreased significantly indicating a threshold size for integrin clustering. Functionally, pattern sizes below the threshold were unable to participate in generation of adhesion strength. In contrast, patterns between the threshold and micron sizes showed a relationship between adhesion strength and area of individual adhesion points, independent of the total available adhesion area. These studies introduce a robust platform for producing nanoscale patterns of proteins in biologically relevant geometries. Results obtained using this approach yielded new insights on the role of nanoscale organization of the adhesive interface in modulating adhesion strength and integrin recruitment.
Show more