Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation.

University of Colorado, Mucosal Inflammation Program, Department of Medicine, Denver, 12700 E 19th Avenue, Mailstop B112, Research Complex 2, Room 7124, Aurora, CO 80045, USA.
Expert Opinion on Therapeutic Targets (Impact Factor: 4.9). 09/2009; 13(11):1267-77. DOI: 10.1517/14728220903241666
Source: PubMed

ABSTRACT Extracellular adenosine functions as an endogenous distress signal via activation of four distinct adenosine receptors (A1, A2A, A2B and A3). Conditions of limited oxygen availability or acute inflammation lead to elevated levels of extracellular adenosine and enhanced signaling events. This relates to a combination of four mechanisms: i) increased production of adenosine via extracellular phosphohydrolysis of precursor molecules (particularly ATP and ADP); ii) increased expression and signaling via hypoxia-induced adenosine receptors, particularly the A2B adenosine receptor; iii) attenuated uptake from the extracellular towards the intracellular compartment; and iv) attenuated intracellular metabolism. Due to their large surface area, mucosal organs are particularly prone to hypoxia and ischemia associated inflammation. Therefore, it is not surprising that adenosine production and signaling plays a central role in attenuating tissue inflammation and injury during intestinal ischemia or inflammation. In fact, recent studies combining pharmacological and genetic approaches demonstrated that adenosine signaling via the A2B adenosine receptor dampens mucosal inflammation and tissue injury during intestinal ischemia or experimental colitis. This review outlines basic principles of extracellular adenosine production, signaling, uptake and metabolism. In addition, we discuss the role of this pathway in dampening hypoxia-elicited inflammation, specifically in the setting of intestinal ischemia and inflammation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The gastrointestinal mucosa has proven to be an interesting tissue for which to investigate disease-related metabolism. In this review, we outline some evidence that implicates metabolic signaling as important features of barrier in the healthy and disease. Studies from cultured cell systems, animal models and human patients have revealed that metabolites generated within the inflammatory microenvironment are central to barrier regulation. These studies have revealed a prominent role for hypoxia and hypoxia-inducible factor (HIF) at key steps in adenine nucleotide metabolism and within the creatine kinase pathway. Results from animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes and barrier function. Studies underway to elucidate the contribution of immune responses will provide additional insight into how metabolic changes contribute to the complexity of the gastrointestinal tract and how such information might be harnessed for therapeutic benefit.
    01/2015; 3(1-2). DOI:10.4161/21688362.2014.970936
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intraperitoneal adenosine reduces abdominal adhesions. However, because of the ultra-short half-life and low solubility of adenosine, optimal efficacy requires multiple dosing. Here, we compared the ability of potential adenosine prodrugs to inhibit post-surgical abdominal adhesions after a single intraperitoneal dose. Abdominal adhesions were induced in mice using an electric toothbrush to damage the cecum. Also, 20 μL of 95 % ethanol was applied to the cecum to cause chemically induced injury. After injury, mice received intraperitoneally either saline (n = 18) or near-solubility limit of adenosine (23 mmol/L; n = 12); 5'-adenosine monophosphate (75 mmol/L; n = 11); 3'-adenosine monophosphate (75 mmol/L; n = 12); 2'-adenosine monophosphate (75 mmol/L; n = 12); 3',5'-cyclic adenosine monophosphate (75 mmol/L; n = 19); or 2',3'-cyclic adenosine monophosphate (75 mmol/L; n = 20). After 2 weeks, adhesion formation was scored by an observer blinded to the treatments. In a second study, intraperitoneal adenosine levels were measured using tandem mass spectrometry for 3 h after instillation of 2',3'-cyclic adenosine monophosphate (75 mmol/L) into the abdomen. The order of efficacy for attenuating adhesion formation was: 2',3'-cyclic adenosine monophosphate > 3',5'-cyclic adenosine monophosphate ≈ adenosine > 5'-adenosine monophosphate ≈ 3'-adenosine monophosphate ≈ 2'-adenosine monophosphate. The groups were compared using a one-factor analysis of variance, and the overall p value for differences between groups was p < 0.000001. Intraperitoneal administration of 2',3'-cAMP yielded pharmacologically relevant levels of adenosine in the abdominal cavity for >3 h. Administration of 2',3'-cyclic adenosine monophosphate into the surgical field is a unique, convenient and effective method of preventing post-surgical adhesions by acting as an adenosine prodrug.
    Digestive Diseases and Sciences 04/2014; 59(9). DOI:10.1007/s10620-014-3139-x · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-inducible factors (HIFs) are stabilized during adverse inflammatory processes associated with disorders such as inflammatory bowel disease, pathogen infection and acute lung injury, as well as during ischaemia-reperfusion injury. HIF stabilization and hypoxia-induced changes in gene expression have a profound impact on the inflamed tissue microenvironment and on disease outcomes. Although the mechanism that initiates HIF stabilization may vary, the final molecular steps that control HIF stabilization converge on a set of oxygen-sensing prolyl hydroxylases (PHDs) that mark HIFs for proteasomal degradation. PHDs are therefore promising therapeutic targets. In this Review, we discuss the emerging potential and associated challenges of targeting the PHD-HIF pathway for the treatment of inflammatory and ischaemic diseases.
    dressNature Reviews Drug Discovery 10/2014; 13(11):852-69. DOI:10.1038/nrd4422 · 37.23 Impact Factor