Article

Cutting Edge: Contribution of Lung-Resident T Cell Proliferation to the Overall Magnitude of the Antigen-Specific CD8 T Cell Response in the Lungs following Murine Influenza Virus Infection

Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
The Journal of Immunology (Impact Factor: 5.36). 10/2009; 183(7):4177-81. DOI: 10.4049/jimmunol.0901109
Source: PubMed

ABSTRACT Following influenza virus infection, CD8 T cells encounter mature, Ag-bearing dendritic cells within the draining lymph nodes and undergo activation, programmed proliferation, and differentiation to effector cells before migrating to the lungs to mediate viral clearance. However, it remains unclear whether CD8 T cells continue their proliferation after arriving in the lungs. To address this question, we developed a novel, in vivo, dual-label system using intranasal CFSE and BrdU administration to identify virus-specific CD8 T cells that are actively undergoing cell division while in the lungs. With this technique we demonstrate that a high frequency of virus-specific CD8 T cells incorporate BrdU while in the lungs and that this lung-resident proliferation contributes significantly to the magnitude of the Ag-specific CD8 T cell response following influenza virus infection.

0 Followers
 · 
52 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of T cell memory from naive precursors is influenced by molecular cues received during T cell activation and differentiation. In this study, we describe a novel role for the chemokine receptors CCR5 and CXCR3 in regulating effector CD8(+) T cell contraction and memory generation after influenza virus infection. We find that Ccr5(-/-) Cxcr3(-/-) cells show markedly decreased contraction after viral clearance, leading to the establishment of massive numbers of memory CD8(+) T cells. Ccr5(-/-) Cxcr3(-/-) cells show reduced expression of CD69 in the lung during the peak of infection, which coincides with differential localization and the rapid appearance of memory precursor cells. Analysis of single chemokine receptor-deficient cells revealed that CXCR3 is primarily responsible for this phenotype, although there is also a role for CCR5 in the enhancement of T cell memory. The phenotype could be reversed by adding exogenous antigen, resulting in the activation and contraction of Ccr5(-/-) Cxcr3(-/-) cells. Similar results were observed during chronic Mycobacterium tuberculosis infection. Together, the data support a model of memory CD8(+) T cell generation in which the chemokine-directed localization of T cells within infected tissues regulates antigen encounter and controls the extent of CD8(+) T cell activation and differentiation, which ultimately regulates effector versus memory cell fate decisions.
    Journal of Experimental Medicine 08/2011; 208(8):1621-34. DOI:10.1084/jem.20102110 · 13.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Influenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs.
    Current topics in microbiology and immunology 07/2014; DOI:10.1007/82_2014_397 · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resident memory T cells (TRM) are broadly defined as a population of T cells, which persist in non-lymphoid sites long-term, do not re-enter the circulation, and are distinct from central memory T cells (TCM) and circulating effector memory T cells (TEM). Recent studies have described populations of TRM cells in the skin, gut, lungs, and nervous tissue. However, it is becoming increasingly clear that the specific environment in which the TRM reside can further refine their phenotypical and functional properties. Here, we focus on the TRM cells that develop following respiratory infection and reside in the lungs and the lung airways. Specifically, we will review recent studies that have described some of the requirements for establishment of TRM cells in these tissues, and the defining characteristics of TRM in the lungs and lung airways. With continual bombardment of the respiratory tract by both pathogenic and environmental antigens, dynamic fluctuations in the local milieu including homeostatic resources and niche restrictions can impact TRM longevity. Beyond a comprehensive characterization of lung TRM cells, special attention will be placed on studies, which have defined how the microenvironment of the lung influences memory T cell survival at this site. As memory T cell populations in the lung airways are requisite for protection yet wane numerically over time, developing a comprehensive picture of factors which may influence TRM development and persistence at these sites is important for improving T cell-based vaccine design.
    Frontiers in Immunology 07/2014; 5:320. DOI:10.3389/fimmu.2014.00320

Preview

Download
2 Downloads
Available from

Similar Publications