Oestrogen plus progestin and lung cancer in postmenopausal women (Women's Health Initiative trial): a post-hoc analysis of a randomised controlled trial.

Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
The Lancet (Impact Factor: 39.21). 09/2009; 374(9697):1243-51. DOI: 10.1016/S0140-6736(09)61526-9
Source: PubMed

ABSTRACT In the post-intervention period of the Women's Health Initiative (WHI) trial, women assigned to treatment with oestrogen plus progestin had a higher risk of cancer than did those assigned to placebo. Results also suggested that the combined hormone therapy might increase mortality from lung cancer. To assess whether such an association exists, we undertook a post-hoc analysis of lung cancers diagnosed in the trial over the entire follow-up period.
The WHI study was a randomised, double-blind, placebo-controlled trial undertaken in 40 centres in the USA. 16 608 postmenopausal women aged 50-79 years with an intact uterus were randomly assigned by a computerised, stratified, permuted block algorithm to receive a once-daily tablet of 0.625 mg conjugated equine oestrogen plus 2.5 mg medroxyprogesterone acetate (n=8506) or matching placebo (n=8102). We assessed incidence and mortality rates for all lung cancer, small-cell lung cancer, and non-small-cell lung cancer by use of data from treatment and post-intervention follow-up periods. Analysis was by intention to treat. This study is registered with, number NCT00000611.
After a mean of 5.6 years (SD 1.3) of treatment and 2.4 years (0.4) of additional follow-up, 109 women in the combined hormone therapy group had been diagnosed with lung cancer compared with 85 in the placebo group (incidence per year 0.16%vs 0.13%; hazard ratio [HR] 1.23, 95% CI 0.92-1.63, p=0.16). 96 women assigned to combined therapy had non-small-cell lung cancer compared with 72 assigned to placebo (0.14%vs 0.11%; HR 1.28, 0.94-1.73, p=0.12). More women died from lung cancer in the combined hormone therapy group than in the placebo group (73 vs 40 deaths; 0.11%vs 0.06%; HR 1.71, 1.16-2.52, p=0.01), mainly as a result of a higher number of deaths from non-small-cell lung cancer in the combined therapy group (62 vs 31 deaths; 0.09%vs 0.05%; HR 1.87, 1.22-2.88, p=0.004). Incidence and mortality rates of small-cell lung cancer were similar between groups.
Although treatment with oestrogen plus progestin in postmenopausal women did not increase incidence of lung cancer, it increased the number of deaths from lung cancer, in particular deaths from non-small-cell lung cancer. These findings should be incorporated into risk-benefit discussions with women considering combined hormone therapy, especially those with a high risk of lung cancer.
National Heart, Lung and Blood Institute, National Institutes of Health.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The estrogen signaling pathway is involved in the biology of non-small-cell lung cancer and represents a novel therapeutic target for lung cancer. This is supported by epidemiological evidence, preclinical studies and recent data from clinical trials. Antiestrogens and inhibitors of estrogen synthesis have been shown to inhibit lung tumor growth as well as prevent lung tumorigenesis in preclinical models both in vitro and in vivo. Two clinical trials testing the effectiveness of hormonal strategies in advanced non-small-cell lung cancer have recently been completed with promising results. Future work in this field should focus on identification of patients that would benefit from hormone modulators so that they can be used earlier in the course of disease or for chemoprevention.
    02/2014; 3(1):43-52. DOI:10.2217/lmt.13.67
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies indicated that estrogens may influence the development of non-small cell lung cancer (NSCLC). The 17-beta-hydroxysteroid dehydrogenase type 1 (HSD17B1) catalyzes the reduction of estrone (E1) to the highly potent E2. Although the significance of aromatase in an intratumoral E2 production in NSCLC is well established, the role of HSD17B1 remains largely unknown. Therefore, we investigated the expression of HSD17B1 in lung cancerous and corresponding histopathologically unchanged tissues from NSCLC patients and the association between HSD17B1 expression and clinicopathological features. Than, we examined the biological significance of HSD17B1 in NSCLC cells in vitro. We tested the impact of 5-Aza-2′-deoxycytidine (5-dAzaC) on HSD17B1 expression and activity.
    Lung Cancer 12/2014; 87(2). DOI:10.1016/j.lungcan.2014.12.012 · 3.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, the expression levels of female hormone receptors, estrogen receptor (ER) and progesterone receptor (PR) and the epidermal growth factor receptor, (EGFR), as well as proliferating cell nuclear antigen (PCNA) were examined in lung tumors that were induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in female A/J mice. Each seven-week-old mouse was administered with 2 mg NNK via intraperitoneal injection and the mice were subsequently euthanized at week 52. Lung tumors, including adenomas, carcinomas in adenomas and adenocarcinomas, were obtained and analyzed by immunohistochemistry for the expression levels of the receptors, ER, PR and EGFR, and PCNA. The results were as follows: i) In mouse lung adenomas, a significant correlation was identified between the size of the tumor and PCNA expression, although not with the expression of the receptors (ER, PR and EGFR); ii) in the carcinoma components of the carcinomas in adenomas, the size of the tumor and PCNA expression were correlated, while EGFR expression demonstrated a significant correlation with PR expression; iii) in adenocarcinomas, the tumor size significantly correlated with PCNA, EGFR and PR expression; and iv) EGFR and PR expression was identified to be significantly correlated in adenocarcinomas, and to a certain extent in the carcinoma components of the carcinomas in adenomas, although not in the adenomas. Notably, ER expression was not associated with tumor growth or the other factors, particularly EGFR expression, and no significant differences were identified between the three types of lesion. These results indicate that PR, like EGFR, may be significant in lung carcinogenesis.
    Oncology letters 12/2014; 8(6):2379-2386. DOI:10.3892/ol.2014.2559 · 0.99 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014