The Sam domain of the lipid phosphatase Ship2 adopts a common model to interact with Arap3-Sam and EphA2-Sam

Burnham Institute for Medical Research, La Jolla, California, USA.
BMC Structural Biology (Impact Factor: 2.22). 09/2009; 9:59. DOI: 10.1186/1472-6807-9-59
Source: PubMed

ABSTRACT Sterile alpha motif (Sam) domains are small protein modules that can be involved in homotypic or heterotypic associations and exhibit different functions. Previous studies have demonstrated that the Sam domain of the lipid phosphatase Ship2 can hetero-dimerize with the Sam domain of the PI3K effector protein Arap3.
Here, we determine the NMR solution structure of Arap3-Sam and implement a multidisciplinary approach consisting of NMR spectroscopy, ITC (Isothermal Titration Calorimetry), mutagenesis and molecular modeling studies to analyze the interaction between Ship2-Sam and Arap3-Sam. This work reveals that Arap3-Sam may associate with Ship2-Sam by adopting a binding mode common to other Sam domains. This binding mode is identical to what we have very recently observed for the association between Ship2-Sam and the Sam domain from the Ephrin A2 receptor.
Our studies further clarify the structural features that are relevant for Sam-Sam interactions involving Ship2 and give additional hints that could be used for the identification of new molecules able to selectively inhibit Sam-Sam associations.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism. [BMB Reports 2013; 46(1): 001-008].
    BMB reports 01/2013; 46(1):1-8. DOI:10.5483/BMBRep.2013.46.1.261 · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ARAP3 is a GTPase-activating protein (GAP) that inactivates Arf6 and RhoA small GTPases. ARAP3 deficiency in mice causes a sprouting angiogenic defect resulting in embryonic lethality by E11. Mice with an ARAP3 R302,303A mutation (Arap3KI/KI) that prevents activation by phosphoinositide-3-kinase (PI3K) have a similar angiogenic phenotype, although some animals survive to adulthood. Here, we report that hematopoietic stem cells (HSCs) from rare adult Arap3KI/KI bone marrow are compromised in their ability to reconstitute recipient mice and to self-renew. To elucidate the potential cell-autonomous and non-cell-autonomous roles of ARAP3 in hematopoiesis, we conditionally deleted Arap3 in hematopoietic cells and in several cell types within the HSC niche. Excision of Arap3 in hematopoietic cells using Vav1-Cre does not alter the ability of ARAP3-deficient progenitor cells to proliferate and differentiate in vitro or ARAP3-deficient HSCs to provide multi-lineage reconstitution and to undergo self-renewal in vivo. Thus, our data suggest that ARAP3 does not play a cell-autonomous role in HSPCs. Deletion of Arap3 in osteoblasts and mesenchymal stromal cells using Prx1-Cre resulted in no discernable phenotypes in hematopoietic development or HSC homeostasis in adult mice. In contrast, deletion of Arap3 using vascular endothelial cadherin (VEC or Cdh5)-driven Cre resulted in embryonic lethality, however HSCs from surviving adult mice were largely normal. Reverse transplantations into VEC-driven Arap3 conditional knockout mice revealed no discernable difference in HSC frequencies or function in comparison to control mice. Taken together, our investigation suggests that despite a critical role for ARAP3 in embryonic vascular development, its loss in endothelial cells minimally impacts HSCs in adult bone marrow.
    PLoS ONE 12/2014; 9(12):e116107. DOI:10.1371/journal.pone.0116107 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lipid phosphatase Ship2 is a protein that intervenes in several diseases such as diabetes, cancer, neurodegeneration, and atherosclerosis. It is made up of a catalytic domain and several protein docking modules such as a C-terminal Sam (Sterile alpha motif) domain. The Sam domain of Ship2 (Ship2-Sam) binds to the Sam domains of the EphA2 receptor (EphA2-Sam) and the PI3K effector protein Arap3 (Arap3-Sam). These heterotypic Sam-Sam interactions occur through formation of dimers presenting the canonical "Mid Loop/End Helix" binding mode. The central region of Ship2-Sam, spanning the C-terminal end of α2, the α3 and α4 helices together with the α2α3 and α3α4 inter-helical loops, forms the Mid Loop surface that is needed to bind partners Sam domains.A peptide encompassing most of the Ship2-Sam Mid Loop interface capable of binding to both EphA2-Sam and Arap3-Sam, was previously identified. Here we investigated the conformational features of this peptide, through solution CD and NMR studies in different conditions. These studies reveal that the peptide is highly flexible in aqueous buffer, while it adopts a helical conformation in presence of 2,2,2-trifluoroethanol. The discovered structural insights and in particular the identification of a helical motif, may lead to the design of more constrained and possibly cell permeable Shiptide-analogues that could work as efficient antagonists of Ship2-Sam heterotypic interactions and embrace therapeutic applications.
    Biopolymers 11/2014; 101(11). DOI:10.1002/bip.22512 · 2.29 Impact Factor

Preview (2 Sources)

Available from

Marilisa Leone