Article

Therapeutic interference with EphrinB2 signalling inhibits oxygen-induced angioproliferative retinopathy.

University Eye Hospital, Freiburg, Germany.
Acta ophthalmologica (Impact Factor: 2.44). 09/2009; 89(1):82-90. DOI: 10.1111/j.1755-3768.2009.01609.x
Source: PubMed

ABSTRACT To investigate whether EphrinB2 (EfnB2) or EphB4 influence retinal angiogenesis under physiological or pathological conditions.
Using the mouse model of oxygen-induced proliferative retinopathy (OIR), the expression of EfnB2, EphB4, vascular endothelial growth factor (VEGF), VEGFR1 and VEGFR2 was quantified by quantitative polymerase chain reaction (qPCR) and localized in EfnB2- and EphB4-lacZ mice. Angioproliferative retinopathy was manipulated by intravitreal injection of dimeric EfnB2 and monomeric or dimeric EphB4.
Dimeric EphB4 (EphB4-Fc) and EfnB2 (EfnB2-Fc) enhanced hypoxia-induced angioproliferative retinopathy but not physiological angiogenesis. Monomeric EphB4 (sEphB4) reduced angiogenesis. The messenger RNA (mRNA) level of EfnB2 increased significantly in the hyperoxic phase (P7-P12), while EphB4, VEGF, VEGFR1 and VEGFR2 showed a significant - up to fivefold - increased expression at P14, the start of morphologically visible vasoproliferation caused by relative hypoxia.
The ephrin/Eph system is involved in angioproliferative retinopathy. Stimulation of EphB4 and EfnB2 signalling using EfnB2-Fc and EphB4-Fc, respectively, enhanced hypoxia-induced angiogenesis. In contrast, sEphB4 inhibited hypoxia-induced angiogenesis. Therefore, angiogenesis is enhanced by signalling through both EphB4 (forward) and EfnB2 (reverse). The distinction in the expression kinetics of EphB4 and EfnB2 indicates that they govern two different signalling pathways and are regulated in diverse ways. sEphB4 might be a useful drug for antiangiogenic therapy.

1 Bookmark
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proper development of retinal blood vessels is essential to ensure sufficient oxygen and nutrient supplies to the retina. It was shown that polyunsaturated fatty acids (PUFAs) could modulate factors involved in tissue vascularization. A congenital deficiency in ether-phospholipids, also termed "plasmalogens", was shown to lead to abnormal ocular vascularization. Because plasmalogens are considered to be reservoirs of PUFAs, we wished to improve our understanding of the mechanisms by which plasmalogens regulate retinal vascular development and whether the release of PUFAs by calcium-independent phospholipase A2 (iPLA2) could be involved.
    PLoS ONE 01/2014; 9(6):e101076. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress and inflammation are important pathological mechanisms in many neurodegenerative diseases, including age-related macular degeneration (AMD). The Very Low-Density Lipoprotein Receptor knockout mouse (Vldlr-/-) has been identified as a model for AMD and in particular for Retinal Angiomatous Proliferation (RAP). In this study we examined the effect of cerium oxide nanoparticles (nanoceria) that have been shown to have catalytic antioxidant activity, on expression of 88 major cytokines in the retinas of Vldlr-/- mice using a PCR array. A single intravitrial injection of nanoceria at P28 caused inhibition of pro-inflammatory cytokines and pro-angiogenic growth factors including Tslp, Lif, Il-3, Il-7, Vegfa, Fgf1, Fgf2, Fgf7, Egf, Efna 3, Lep, and up-regulation of several cytokines and anti-angiogenic genes in the Vldlr-/-retina within one week. We used the Ingenuity Pathway Analysis software to search for biological functions, pathways, and interrelationships between gene networks. Many of the genes whose activities were affected are involved in cell signaling, cellular development, growth and proliferation, and tissue development. Western blot analysis revealed that nanoceria inhibit the activation of ERK 1/2, JNK, p38 MAP kinase, and Akt. These data suggest that nanoceria may represent a novel therapeutic strategy to treat AMD, RAP, and other neurodegenerative diseases.
    Experimental Eye Research 08/2013; · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Receptor tyrosine kinases (RTKs) are important players in various cellular processes, including proliferation, migration, metabolism, and neuronal development. EphB4 RTK is essential for the development of a functional arterial-venous network in embryonic and adult neoangiogenesis. To develop novel inhibitors of EphB4 that might have applications in severe diseases like cancer and retinopathies, assays need to be in place that resemble, in a most physiological fashion, the activation and downstream function of the kinase. In addition, such assays need to be amenable to high-throughput screening to serve efficiently the modern drug discovery processes in the pharmaceutical industry. The authors have developed an enzyme fragment complementation assay that measures the interaction of a downstream docking protein to the activated and phosphorylated full-length EphB4 kinase in cells. The assay is specific, robust, and amenable to miniaturization and high-throughput screening. It covers most steps in the activation process of EphB4, including ligand binding, autophosphorylation, and docking of a downstream interactor. This assay format can be transferred to other RTKs and adds an important cell-based kinase assay option to researchers in the field.
    Assay and Drug Development Technologies 04/2013; · 1.90 Impact Factor

Full-text

Download
0 Downloads