Article

The application of microfluidics in biology

School of Electronics and Computer Science, Highfield, University of Southampton, Southampton, UK.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2010; 583:55-80. DOI: 10.1007/978-1-60327-106-6_2
Source: PubMed

ABSTRACT Recent advances in the bio- and nanotechnologies have led to the development of novel microsystems for bio-particle separation and analysis. Microsystems are already revolutionising the way we do science and have led to the development of a number of ultrasensitive bioanalytical devices capable of analysing complex biological samples. These devices have application in a number of diverse areas such as pollution monitoring, clinical diagnostics, drug discovery and biohazard detection. In this chapter we give an overview of the physical principles governing the behaviour of fluids and particles at the micron scale, which are relevant to the operation of microfluidic devices. We briefly discuss some of the fabrication technologies used in the production of microfluidic systems and then present a number of examples of devices and applications relevant to the biological and life sciences.

0 Followers
 · 
143 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell Surface binding kinetics of bio-molecular interaction is of fundamental importance in advancing our understanding of numerous biological processes and developing bioengineered systems. We have adopted a displacement technique, wherein a ligand is displaced from the binding site, by an excess of a ligand analog perfused through the microchannel. The theoretical model describes transient convection and diffusion in the microchannel volume following dissociation of the ligand from the cell surface receptors. To incorporate living cell processes, the model includes cell surface receptor trafficking. The decay of eluting ligand concentration follows a mono-exponential curve for one receptor sub-type or kinetic dissociation rate constant. A numerical solution is obtained using the method of finite differences and verified with an analytical solution for the case of negligible dispersion. Results illustrate how the fluid velocity and receptor internalization rate influence the ligand concentration at the microchannel outlet. This modeling effort is expected to allow better experimental design and subsequently more accurate measurement of kinetic rate constants.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell migration contributes to cancer metastasis and involves cell adhesion to the extracellular matrix (ECM), force generation through the cell's cytoskeletal, and finally cell detachment. Both adhesive cues from the ECM and soluble cues from neighbouring cells and tissue trigger intracellular signalling pathways that are essential for cell migration. While the machinery of many signalling pathways is relatively well understood, how hierarchies of different and conflicting signals are established is a new area of cellular cancer research. We examine the recent advances in microfabrication, microfluidics, and nanotechnology that can be utilized to engineer micro- and nanoscaled cellular environments. Controlling both adhesive and soluble cues for migration may allow us to decipher how cells become motile, choose the direction for migration, and how oncogenic transformations influences these decision-making processes.
    Journal of Oncology 06/2010; 2010:363106. DOI:10.1155/2010/363106
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The past decade has brought many innovations to the field of flow and image-based cytometry. These advancements can be seen in the current miniaturization trends and simplification of analytical components found in the conventional flow cytometers. On the other hand, the maturation of multispectral imaging cytometry in flow imaging and the slide-based laser scanning cytometers offers great hopes for improved data quality and throughput while proving new vistas for the multiparameter, real-time analysis of cells and tissues. Importantly, however, cytometry remains a viable and very dynamic field of modern engineering. Technological milestones and innovations made over the last couple of years are bringing the next generation of cytometers out of centralized core facilities while making it much more affordable and user friendly. In this context, the development of microfluidic, lab-on-a-chip (LOC) technologies is one of the most innovative and cost-effective approaches toward the advancement of cytometry. LOC devices promise new functionalities that can overcome current limitations while at the same time promise greatly reduced costs, increased sensitivity, and ultra high throughputs. We can expect that the current pace in the development of novel microfabricated cytometric systems will open up groundbreaking vistas for the field of cytometry, lead to the renaissance of cytometric techniques and most importantly greatly support the wider availability of these enabling bioanalytical technologies.
    Methods in cell biology 01/2011; 102:105-25. DOI:10.1016/B978-0-12-374912-3.00005-5 · 1.44 Impact Factor
Show more