The application of microfluidics in biology.

School of Electronics and Computer Science, Highfield, University of Southampton, Southampton, UK.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2010; 583:55-80. DOI: 10.1007/978-1-60327-106-6_2
Source: PubMed

ABSTRACT Recent advances in the bio- and nanotechnologies have led to the development of novel microsystems for bio-particle separation and analysis. Microsystems are already revolutionising the way we do science and have led to the development of a number of ultrasensitive bioanalytical devices capable of analysing complex biological samples. These devices have application in a number of diverse areas such as pollution monitoring, clinical diagnostics, drug discovery and biohazard detection. In this chapter we give an overview of the physical principles governing the behaviour of fluids and particles at the micron scale, which are relevant to the operation of microfluidic devices. We briefly discuss some of the fabrication technologies used in the production of microfluidic systems and then present a number of examples of devices and applications relevant to the biological and life sciences.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A microengineered array to sample clonal colonies is described. The cells were cultured on an array of individually releasable elements until the colonies expanded to cover multiple elements. Single elements were released using a laser-based system and collected to sample cells from individual colonies. A greater than an 85% rate in splitting and collecting colonies was achieved using a 3-dimensional cup-like design or "microcup". Surface modification using patterned titanium deposition of the glass substrate improved the stability of microcup adhesion to the glass while enabling minimization of the laser energy for splitting the colonies. Smaller microcup dimensions and slotting the microcup walls reduced the time needed for colonies to expand into multiple microcups. The stem cell colony retained on the array and the collected fraction within released microcups remained undifferentiated and viable. The colony samples were characterized by both reporter gene expression and a destructive assay (PCR) to identify target colonies. The platform is envisioned as a means to rapidly establish cell lines using a destructive assay to identify desired clones.
    The Analyst 10/2012; · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium resistant to all existing penicillin and lactam-based antimicrobial drugs and, therefore, has become one of the most prevalent antibiotic-resistant pathogens found in hospitals. The multi-drug resistant characteristics of MRSA make it challenging to clinically treat infected patients. Therefore, early diagnosis of MRSA has become a public-health priority worldwide. Conventionally, cell-culture based methodology and microscopic identification are commonly used for MRSA detection. However, they are relatively time-consuming and labor-intensive. Recently, molecular diagnosis based on nucleic acid amplification techniques, such as polymerase chain reaction (PCR), has been widely investigated for the rapid detection of MRSA. However, genomic DNA of both live and dead pathogens can be distinguished by conventional PCR. These results thus could not provide sufficient confirmation of an active infection for clinicians. In this study, live MRSA was rapidly detected by using a new integrated microfluidic system. The microfluidic system has been demonstrated to have 100% specificity to detect live MRSA with S. aureus and other pathogens commonly found in hospitals. The experimental results showed that the limit of detection for live MRSA from biosamples was approximately 10(2) CFU/μl. In addition, the entire diagnostic protocol, from sample pre-treatment to fluorescence observation, can be automatically completed within 2.5 h. Consequently, this microfluidic system may be a powerful tool for the rapid molecular diagnosis of live MRSA.
    Biomicrofluidics 01/2012; 6(3):34119. · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A microfabricated platform was developed for highly parallel and efficient colony picking, splitting and clone identification. A pallet array provided patterned cell colonies which mated to a second printing array composed of bridging microstructures formed by a supporting base and attached post. The posts enabled mammalian cells from colonies initially cultured on the pallet array to migrate to corresponding sites on the printing array. Separation of the arrays simultaneously split the colonies creating a patterned replica. Optimization of array elements provided transfer efficiencies greater than 90% using bridging posts of 30 µm diameter and 100 µm length and total colony numbers of 3000. Studies using five mammalian cell lines demonstrated that a variety of adherent cell types could be cultured and effectively split with printing efficiencies of 78-92%. To demonstrate the technique's utility, clonal cell lines with siRNA knockdown of Coronin 1B were generated using the arrays and compared to a traditional FACS/Western Blotting-based approach. Identification of target clones required a destructive assay to identify cells with an absence of Coronin 1B brought about by the successful infection of interfering shRNA construct. By virtue of miniaturization and its parallel format, the platform enabled the identification and generation of 12 target clones from a starting sample of only 3900 cells and required only 5-man hours over 11 days. In contrast, the traditional method required 500,000 cells and generated only 5 target clones with 34-man hours expended over 47 days. These data support the considerable reduction in time, manpower and reagents using the miniaturized platform for clonal selection by destructive assay versus conventional approaches.
    Analytical Chemistry 11/2012; · 5.83 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014