Article

Antioxidants and cognitive training interact to affect oxidative stress and memory in APP/PSEN1 mice.

Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0475, USA.
Nutritional Neuroscience (Impact Factor: 2.11). 10/2009; 12(5):203-18. DOI: 10.1179/147683009X423364
Source: PubMed

ABSTRACT The present study investigated the relationships among oxidative stress, beta-amyloid and cognitive abilities in the APP/PSEN1 double-transgenic mouse model of Alzheimer's disease. In two experiments, long-term dietary supplements were given to aged APP/PSEN1 mice containing vitamin C alone (1 g/kg diet; Experiment 1) or in combination with a high (750 IU/kg diet, Experiments 1 and 2) or lower (400 IU/kg diet, Experiment 2) dose of vitamin E. Oxidative stress, measured by F(4)-neuroprostanes or malondialdehyde, was elevated in cortex of control-fed APP/PSEN1 mice and reduced to wild-type levels by vitamin supplementation. High-dose vitamin E with C was less effective at reducing oxidative stress than vitamin C alone or the low vitamin E+C diet combination. The high-dose combination also impaired water maze performance in mice of both genotypes. In Experiment 2, the lower vitamin E+C treatment attenuated spatial memory deficits in APP/PSEN1 mice and improved performance in wild-type mice in the water maze. Amyloid deposition was not reduced by antioxidant supplementation in either experiment.

Full-text

Available from: Michael P McDonald, Apr 01, 2015
0 Followers
 · 
220 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7 months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r 2 = .959), but uncorrelated in transgenics (r 2 = .013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways.
    Neurobiology of Disease 03/2015; 78:45-55. · 5.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Subclinical Vitamin C deficiency is widespread in many populations but its role in both Alzheimer's disease and normal aging is understudied. In the present study we decreased brain vitamin C in the APPSWE/PSEN1deltaE9 mouse model of Alzheimer's disease, by crossing APP/PSEN1+ bigenic mice with SVCT2+/- heterozygous knockout mice, which have lower numbers of the sodium-dependent vitamin C transporter required for neuronal vitamin C transport. SVCT2+/- mice performed less well on the rotarod task at both 5 and 12 months of age compared to littermates. SVCT2+/-,and APP/PSEN1+,mice, and the combination genotype SVCT2+/-APP/PSEN1+, were also impaired on multiple tests of cognitive ability (olfactory memory task, Y-maze alternation, conditioned fear, Morris water maze). In younger mice, both low vitamin C (SVCT2+/-) and APP/PSEN1 mutations increased brain cortex oxidative stress (malondialdehyde, protein carbonyls, F2-isoprostanes) and decreased total glutathione compared to wild-type controls. SVCT2+/- mice also had increased amounts of both soluble and insoluble Aβ1-42 and a higher Aβ1-42/1-40 ratio. By 14 months of age, oxidative stress levels were similar among groups, but there were more amyloid-β plaque deposits in both hippocampus and cortex in SVCT2+/-APP/PSEN1+ mice compared to APP/PSEN1+ mice with normal brain vitamin C. The data suggest that even moderate intracellular vitamin C deficiency has an important role in accelerating amyloid pathogenesis, particularly during early stages of disease development, and that these effects are likely modulated by oxidative stress pathways.
    ACS Chemical Neuroscience 02/2015; 6(4). DOI:10.1021/cn500308h · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r(2)=.959), but uncorrelated in transgenics (r(2)=.013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways. Copyright © 2015. Published by Elsevier Inc.
    Neurobiology of Disease 03/2015; 25. DOI:10.1016/j.nbd.2015.03.018 · 5.20 Impact Factor