Article

Acquired Monosomy 7 Myelodysplastic Syndrome in a Child With Clinical Features Suggestive of Dyskeratosis Congenita and IMAGe Association

Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
Pediatric Blood & Cancer (Impact Factor: 2.56). 01/2010; 54(1):154-7. DOI: 10.1002/pbc.22283
Source: PubMed

ABSTRACT We describe a case of acquired monosomy 7 myelodysplastic syndrome (MDS) in a boy with congenital adrenocortical insufficiency, genital anomalies, growth delay, skin hyperpigmentation, and chronic lung disease. Some of his clinical manifestations were suggestive of dyskeratosis congenita (DC), while other features resembled IMAGe association. DC has been linked to mutations in telomere maintenance genes. The genetic basis of IMAGe association is unknown, although mice harboring a mutation in a telomere maintenance gene, Tpp1, have adrenal hypoplasia congenita. We considered the possibility that this patient has a defect in telomere function resulting in features of both DC and IMAGe association.

Full-text

Available from: Shashikant Kulkarni, Apr 19, 2015
1 Follower
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with dyskeratosis congenita (DC), a heterogeneous inherited bone marrow failure syndrome, have abnormalities in telomere biology, including very short telomeres and germline mutations in DKC1, TERC, TERT, or NOP10, but approximately 60% of DC patients lack an identifiable mutation. With the very short telomere phenotype and a highly penetrant, rare disease model, a linkage scan was performed on a family with autosomal-dominant DC and no mutations in DKCI, TERC, or TERT. Evidence favoring linkage was found at 2p24 and 14q11.2, and this led to the identification of TINF2 (14q11.2) mutations, K280E, in the proband and her five affected relatives and TINF2 R282H in three additional unrelated DC probands, including one with Revesz syndrome; a fifth DC proband had a R282S mutation. TINF2 mutations were not present in unaffected relatives, DC probands with mutations in DKC1, TERC, or TERT or 298 control subjects. We demonstrate that a fifth gene, TINF2, is mutated in classical DC and, for the first time, in Revesz syndrome. This represents the first shelterin complex mutation linked to human disease and confirms the role of very short telomeres as a diagnostic test for DC.
    The American Journal of Human Genetics 03/2008; 82(2):501-9. DOI:10.1016/j.ajhg.2007.10.004 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomeres, consisting of nucleotide repeats and a protein complex at chromosome ends, are essential in maintaining chromosomal integrity. Dyskeratosis congenita (DC) is the inherited bone marrow failure syndrome (IBMFS) that epitomizes the effects of abnormal telomere biology. Patients with DC have extremely short telomere lengths (<1st percentile) and many have mutations in telomere biology genes. Interpretation of telomere length in other IBMFSs is less straightforward. Abnormal telomere shortening has been reported in patients with apparently acquired hematologic disorders, including aplastic anemia, myeolodysplasia, paroxysmal nocturnal hemoglobinuria, and leukemia. In these disorders, the shortest-lived cells have the shortest telomeres, suggestive of increased hematopoietic stress. Telomeres are also markers of replicative and/or oxidative stress in other complex disease pathways, such as inflammation, stress, and carcinogenesis. The spectrum of related disorders caused by mutations in telomere biology genes extends beyond classical DC to include marrow failure that does not respond to immunosuppression, idiopathic pulmonary fibrosis, and possibly other syndromes. We suggest that such patients be categorized as having an inherited disorder of telomere biology. Longitudinal studies of patients with very short telomeres but without classical DC are necessary to further understand the long-term sequelae, such as malignancy, osteonecrosis/osteoporosis, and pulmonary and liver disease.
    Mechanisms of Ageing and Development 01/2008; 129(1-2):35-47. DOI:10.1016/j.mad.2007.11.002 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acquired and congenital aplastic anemias recently have been linked molecularly and pathophysiologically by abnormal telomere maintenance. Telomeres are repeated nucleotide sequences that cap the ends of chromosomes and protect them from damage. Telomeres are eroded with cell division, but in hematopoietic stem cells, maintenance of their length is mediated by telomerase. Accelerated telomere shortening is virtually universal in dyskeratosis congenita, caused by mutations in genes encoding components of telomerase or telomere-binding protein (TERT, TERC, DKC1, NOP10, or TINF2). About one-third of patients with acquired aplastic anemia also have short telomeres, which in some cases associate with TERT or TERC mutations. These mutations cause low telomerase activity, accelerated telomere shortening, and diminished proliferative capacity of hematopoietic progenitors. As in other genetic diseases, additional environmental, genetic, and epigenetic modifiers must contribute to telomere erosion and ultimately to disease phenotype. Short telomeres also may cause genomic instability and malignant progression in these marrow failure syndromes. Identification of short telomeres has potential clinical implications: it may be useful in dyskeratosis congenita diagnosis, in suggesting mutations in patients with acquired aplastic anemia, and for selection of suitable hematopoietic stem cell family donors for transplantation in telomerase-deficient patients.
    Blood 06/2008; 111(9):4446-55. DOI:10.1182/blood-2007-08-019729 · 9.78 Impact Factor