Non-invasive identification of organic materials in wall paintings by fiber optic reflectance infrared spectroscopy: a statistical multivariate approach.

INSTM Operative Unit of Perugia c/o Dipartimento di Chimica, Università di Perugia, 06123 Perugia, Italy.
Analytical and Bioanalytical Chemistry (Impact Factor: 3.58). 09/2009; 395(7):2097-106. DOI: 10.1007/s00216-009-3108-y
Source: PubMed

ABSTRACT The aim of this study is to develop a method for the non-invasive and in situ identification of organic binders in wall paintings by fiber optic mid-FTIR reflectance spectroscopy. The non-invasive point analysis methodology was set-up working on a wide set of wall painting replicas of known composition and using statistical multivariate methods, in particular principal component analysis (PCA), for the interpretation, understanding, and management of data acquired with reflectance mid-FTIR spectroscopy. Results show that PCA can be helpful in managing and preliminary sorting of the large amount of spectra typically collected during non-invasive measurement campaigns and highlight further avenues for research. The developed PCA model was finally applied to the case of a Renaissance wall painting by Perugino assessing it predictability as compared to the interpretation of the single spectrum.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The applicability of ATR-FTIR spectroscopy with partial least squares (PLS) data analysis was evaluated for quantifying the components of mixtures of paint binding media and pigments, and alkyd resins. PLS methods were created using a number of standard mixtures. Validation and measurement uncertainty estimation was carried out. Binary, ternary and quaternary mixtures of several common binding media and pigments were quantified, with standard measurement uncertainties in most cases below 3g/100g. Classes of components - aromatic anhydrides and alcohols - used in alkyd resin synthesis were also successfully quantified, with standard uncertainties in the range of 2-3g/100g. This is a more demanding application because in alkyd resins aromatic anhydrides and alcohols have reacted to form a polyester, and are not present in their original forms. Once a PLS method has been calibrated, analysis time and cost are significantly reduced from typical quantitative methods such as GC/MS. This is beneficial in the case of routine analysis where the components are known.
    Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 05/2014; 133C:207-213. DOI:10.1016/j.saa.2014.05.058 · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mid-infrared fiberoptics reflectance spectroscopy (mid-IR FORS) is a very interesting technique for artwork characterization purposes. However, the fact that the spectra obtained are a mixture of surface (specular) and volume (diffuse) reflection is a significant drawback. The physical and chemical features of the artwork surface may produce distortions in the spectra that hinder comparison with reference databases acquired in transmission mode. Several studies attempted to understand the influence of the different variables and propose procedures to improve the interpretation of the spectra. This article is focused on the application of mid-IR FORS and multivariate calibration to the analysis of easel paintings. The objectives are the evaluation of the influence of the surface roughness on the spectra, the influence of the matrix composition for the classification of unknown spectra, and the capability of obtaining pigment composition mappings. A first evaluation of a fast procedure for spectra management and pigment discrimination is discussed. The results demonstrate the capability of multivariate methods, principal component analysis (PCA), and partial least squares discrimination analysis (PLS-DA), to model the distortions of the reflectance spectra and to delimitate and discriminate areas of uniform composition. The roughness of the painting surface is found to be an important factor affecting the shape and relative intensity of the spectra. A mapping of the major pigments of a painting is possible using mid-IR FORS and PLS-DA when the calibration set is a palette that includes the potential pigments present in the artwork mixed with the appropriate binder and that shows the different paint textures.
    Analytical and Bioanalytical Chemistry 08/2014; 406(26). DOI:10.1007/s00216-014-8091-2 · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The compositions of ancient varnishes are mainly determined destructively by separation methods coupled to mass spectrometry. In this study, a methodology for non-invasive quantitative analyses of varnishes by vibrational spectroscopies is proposed. For that, experimental simplified varnishes of colophony and linseed oil were prepared according to 18th century traditional recipes with an increasing mass concentration ratio of colophony/linseed oil. FT-Raman and IR analyses using ATR and non-invasive reflectance modes were done on the “pure” materials and on the different mixtures. Then, a new approach involving spectral decomposition calculation was developed considering the mixture spectra as a linear combination of the pure materials ones, and giving a relative amount of each component. Specific spectral regions were treated and the obtained results show a good accuracy between the prepared and calculated amounts of the two compounds. We were thus able to detect and quantify from 10% to 50% of colophony in linseed oil using non-invasive techniques that can also be conducted in situ with portable instruments when it comes to museum varnished objects and artifacts.
    Talanta 11/2014; 129:336-345. DOI:10.1016/j.talanta.2014.05.059 · 3.51 Impact Factor