Production of a Fungistatic Substance by Pseudallescheria boydii Isolated from Soil Amended with Vegetable Tissues and Its Significance

Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.
Mycopathologia (Impact Factor: 1.53). 09/2009; 169(2):125-31. DOI: 10.1007/s11046-009-9237-1
Source: PubMed


Four fungal isolates that were able to use vegetable tissues for multiplication in soil were isolated and identified as Pseudallescheria boydii based on morphological characteristics and ITS sequence similarity. When grown in broth prepared from the same vegetable tissues used in soil amendment, all these isolates of P. boydii produced a substance capable of reducing the disease incidence of black leaf spot of spoon cabbage caused by Alternaria brassicicola and inhibiting the germination of A. brassicicola conidia. The substance, which was fungistatic, was very stable under high temperature and high or low pH value. It was soluble in polar solvents and insoluble in non-polar solvents. Molecular weight estimation and ion exchange ability tests suggest that the fungistatic compound has a molecular weight between 500 and 1,000 and has no charge on its molecule. Results from this study suggest the possession of a strong competitive saprophytic ability by P. boydii, which in turn may explain the widespread occurrence of this human pathogen in soil. Production of a fungistatic substance when P. boydii was grown in broth prepared from vegetable tissues suggests the importance of antibiotic production in its competitive saprophytic colonization of organic matters in soil.

3 Reads
  • Source
    • "As a matter of fact, both ergosterol and 18:2ω6,9 concentrations in 30-d-old PA microcosms were significantly lower than those found in coeval amended incubation control . This might be concomitantly due to both the limited growth of the inoculant and to the widely known ability of Pseudoallescheria spp. to produce fungistatic substances which also hampered the growth of resident fungi (Ko et al., 2010). On the one hand, and with regard to the impact of Pseudoallescheria sp. on bacterial biota, the absence of significant differences in densities of cultivable heterotrophic and hydrocarbonoclastic bacteria with the non-inoculated and amended incubation control, suggested that the augmented fungus did not negatively affect the bacterial biota. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The present work was aimed at isolating and identifying the main members of the mycobiota of a clay soil historically contaminated by mid- and long-chain aliphatic hydrocarbons (AH) and to subsequently assess their hydrocarbon-degrading ability. All the isolates were Ascomycetes and, among them, the most interesting was Pseudoallescheria sp. 18A, which displayed both the ability to use AH as the sole carbon source and to profusely colonize a wheat straw:poplar wood chip (70:30, w/w) lignocellulosic mixture (LM) selected as the amendment for subsequent soil remediation microcosms. After a 60 d mycoaugmentation with Pseudoallescheria sp. of the aforementioned soil, mixed with the sterile LM (5:1 mass ratio), a 79.7% AH reduction and a significant detoxification, inferred by a drop in mortality of Folsomia candida from 90 to 24%, were observed. However, similar degradation and detoxification outcomes were found in the non-inoculated incubation control soil that had been amended with the sterile LM. This was due to the biostimulation exerted by the amendment on the resident microbiota, fungi in particular, the activity and density of which were low, instead, in the non-amended incubation control soil.
    Science of The Total Environment 02/2015; 505:545-554. DOI:10.1016/j.scitotenv.2014.10.027 · 4.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microorganisms capable of utilizing vegetable tissues for growth in soils were isolated and their vegetable broth cultures were individually sprayed directly on leaves to test their ability to control Phytophthora blight of bell pepper caused by Phytophthora capsici. Liquid culture of Streptomyces strain TKA-5, a previously undescribed species obtained in this study, displayed several desirable disease control characteristics in nature, including high potency, long lasting and ability to control also black leaf spot of spoon cabbage caused by Alternaria brassicicolca. The extract was fungicidal to P. capsici but fungistatic to A. brassicicola. It was stable at high temperature and high pH. However, after exposure to pH 2 for 24h, the extract was no longer inhibitory to P. capsici although it was still strongly inhibitory to A. brassicicola. After treatment with cation or anion exchange resins, the extract lost its inhibitory effect against P. capsici but not A. brassicicola. The results suggest that the extract contained two different kinds of inhibitory metabolites, one against P. capsici with both positive and negative charges on its molecule and another against A. brassicicola with no charges on its molecule. The inhibitory metabolites were soluble in ethanol or methanol but not in water, ether or chloroform. They were dialyzable in the membrane tubing with molecular weight cut-off of 10,000, 1000 or 500 but not 100, indicating that the inhibitors have a molecular weight between 500 and 100. Results also showed that both inhibitors are not proteins.
    New Biotechnology 09/2010; 27(4):397-402. DOI:10.1016/j.nbt.2010.05.014 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.
    Sensors 12/2011; 11(1):1105-76. DOI:10.3390/s110101105 · 2.25 Impact Factor
Show more