Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino

McColl-Lockwood Laboratory for Muscular Dystrophy Laboratory, Neuromuscular/ALS Center, Department of Neurology, Carolinas Medical Center, Charlotte, NC 28231, USA.
Gene therapy (Impact Factor: 4.2). 09/2009; 17(1):132-40. DOI: 10.1038/gt.2009.120
Source: PubMed

ABSTRACT We have earlier shown that antisense morpholino oligomers are able to restore dystrophin expression by systemic delivery in body-wide skeletal muscles of dystrophic mdx mice. However, the levels of dystrophin expression vary considerably and, more importantly, no dystrophin expression has been achieved in cardiac muscle. In this study, we investigate the efficiency of morpholino-induced exon skipping in cardiomyoblasts and myocytes in vitro, and in cardiac muscle in vivo by dose escalation. We showed that morpholino induces targeted exon skipping equally effectively in both skeletal muscle myoblasts and cardiomyoblasts. Effective exon skipping was achieved in cardiomyocytes in culture. In the mdx mice, morpholino rescues dystrophin expression dose dependently in both skeletal and cardiac muscles. Therapeutic levels of dystrophin were achieved in cardiac muscle albeit at higher doses than in skeletal muscles. Up to 50 and 30% normal levels of dystrophin were induced by single systemic delivery of 3 g kg(-1) of morpholino in skeletal and cardiac muscles, respectively. High doses of morpholino treatment reduced the serum levels of creatine kinase without clear toxicity. These findings suggest that effective rescue of dystrophin in cardiac muscles can be achieved by morpholino for the treatment of Duchenne muscular dystrophy.

  • Advances in Immunology 02/1995; 59:1-98. DOI:10.1016/S0065-2776(08)60629-X · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in the absence of functional protein. In the majority of cases these are out-of-frame deletions that disrupt the reading frame. Several attempts have been made to restore the dystrophin mRNA reading frame by modulation of pre-mRNA splicing with antisense oligonucleotides (AOs), demonstrating success in cultured cells, muscle explants, and animal models. We are preparing for a phase I/IIa clinical trial aimed at assessing the safety and effect of locally administered AOs designed to inhibit inclusion of exon 51 into the mature mRNA by the splicing machinery, a process known as exon skipping. Here, we describe a series of systematic experiments to validate the sequence and chemistry of the exon 51 AO reagent selected to go forward into the clinical trial planned in the United Kingdom. Eight specific AO sequences targeting exon 51 were tested in two different chemical forms and in three different preclinical models: cultured human muscle cells and explants (wild type and DMD), and local in vivo administration in transgenic mice harboring the entire human DMD locus. Data have been validated independently in the different model systems used, and the studies describe a rational collaborative path for the preclinical selection of AOs for evaluation in future clinical trials.
    Human Gene Therapy 10/2007; 18(9):798-810. DOI:10.1089/hum.2006.061 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exon-skipping efficacies of phosphodiamidate morpholino oligomers (PMOs) or the conjugates of PMOs with cell-penetrating peptides (PPMOs) have been tested in various animal models of Duchenne muscular dystrophy (DMD), including mdx mice, utrophin-dystrophin double-knockout mice, and CXMD dogs, as well as in DMD patients in clinical trials. The studies have shown that PMOs can diffuse into leaky muscle cells, modify splicing of DMD transcripts, induce expression of partially functional dystrophin, and improve function of some skeletal muscles. PMOs are non-toxic, with a report of mdx mice tolerating a 3g/kg dose, and no drug-related safety issue in human has been reported. However, because of their poor cell uptake and rapid renal clearance, large and frequently repeated doses of PMOs are likely required for functional benefit in some skeletal muscles of DMD patients. In addition, PMOs do not enter cardiomyocytes sufficiently to relieve heart pathology, the efficacy of delivery to various muscles varies greatly, and delivery across the tissue of each skeletal muscle tissue is patchy. PPMOs enter cells at far lower doses, enter cardiomyocytes in useful quantities, and deliver more evenly to myocytes both when different muscles are compared and when assessed at the level of single muscle tissue sections. Compared to PMOs, far lower doses of PPMOs can restore dystrophin sufficiently to reduce disease pathology, increase skeletal and cardiac muscle functions, and prolong survival of animals. The biggest challenge for PPMO is determining safe and effective doses. The toxicity of PPMOs will require caution when moving into the clinic. The first PPMO-based DMD drug is currently in preclinical development for DMD patients who can benefit from skipping exon 50.
    Biochimica et Biophysica Acta 02/2010; 1798(12):2296-303. DOI:10.1016/j.bbamem.2010.02.012 · 4.66 Impact Factor