Clustering: a neural network approach.

Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada, H3G 1M8.
Neural networks: the official journal of the International Neural Network Society (Impact Factor: 2.08). 08/2009; 23(1):89-107. DOI: 10.1016/j.neunet.2009.08.007
Source: PubMed

ABSTRACT Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The most important problems with exploiting artificial neural networks (ANNs) are to design the network topology, which usually requires an excessive amount of expert’s effort, and to train it. In this paper, a new evolutionary-based algorithm is developed to simultaneously evolve the topology and the connection weights of ANNs by means of a new combination of grammatical evolution (GE) and genetic algorithm (GA). GE is adopted to design the network topology while GA is incorporated for better weight adaptation. The proposed algorithm needs to invest a minimal expert’s effort for customization and is capable of generating any feedforward ANN with one hidden layer. Moreover, due to the fact that the generalization ability of an ANN may decrease because of overfitting problems, the algorithm utilizes a novel adaptive penalty approach to simplify ANNs generated through the evolution process. As a result, it produces much simpler ANNs that have better generalization ability and are easy to implement. The proposed method is tested on some real world classification datasets, and the results are statistically compared against existing methods in the literature. The results indicate that our algorithm outperforms the other methods and provides the best overall performance in terms of the classification accuracy and the number of hidden neurons. The results also present the contribution of the proposed penalty approach in the simplicity and generalization ability of the generated networks.
    Engineering Applications of Artificial Intelligence 03/2015; 39:1-13. DOI:10.1016/j.engappai.2014.11.003 · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural network is acted as noise canceller to implement noise cancel under the condition of interference noise has nonlinear correlation to reference noise. If interference noise has nonlinear correlation to reference noise, the transversal filter has weak effect to cancel the noise in the signal. Neural network has nonlinear characteristic transfer and can solve this problem, and a new variable step size algorithm is proposed to further improve the performance. Computer simulation results show that neural network noise canceller has better signal to noise gain for nonlinear noise.
    10/2013; 433-435:709-712. DOI:10.4028/
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When no prior knowledge is available, clustering is a useful technique for categorizing data into meaningful groups or clusters. In this paper, a modified fuzzy min–max (MFMM) clustering neural network is proposed. Its efficacy for tackling power quality monitoring tasks is demonstrated. A literature review on various clustering techniques is first presented. To evaluate the proposed MFMM model, a performance comparison study using benchmark data sets pertaining to clustering problems is conducted. The results obtained are comparable with those reported in the literature. Then, a real-world case study on power quality monitoring tasks is performed. The results are compared with those from the fuzzy c-means and k-means clustering methods. The experimental outcome positively indicates the potential of MFMM in undertaking data clustering tasks and its applicability to the power systems domain.
    Applied Soft Computing 03/2015; 28. DOI:10.1016/j.asoc.2014.09.050 · 2.68 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014