Article

Development of real time RT-PCR assays for detection of type A influenza virus and for subtyping of avian H5 and H7 hemagglutinin subtypes.

Department of Public Health and Microbiology, Virology Unit, University of Turin, Via Santena 9, 10126, Torino, Italy.
Molecular Biotechnology (Impact Factor: 2.26). 09/2009; 44(1):41-50. DOI: 10.1007/s12033-009-9211-7
Source: PubMed

ABSTRACT Rapid detection and subtyping of H5 and H7 subtypes influenza A viruses are important for disease control in poultry and potential transmission to humans. Currently, virus isolation and subsequent HA and NA subtyping constitute the standard for avian influenza viruses detection and subtype identification. These methods are highly accurate and sensitive but are also laborious and time-consuming. Reverse transcription PCR and real time reverse transcription PCR assays, suitable tests for rapid detection, have previously been used for the specific diagnosis of H5 and H7 viruses, however, at present, no primer and probe sets are available for the identification of all H5 and H7 strains. Herein, we have developed specific and sensitive real time reverse transcription PCR assays for the detection of type A influenza virus and for subtyping of avian H5 and H7 hemagglutinin subtypes and we have also compared these molecular assays with viral isolation in terms of sensitivity. Our results demonstrate that the real time reverse transcription PCR assays are more sensitive, specific, less expensive compared to viral isolation. In conclusion, molecular assays could represent an useful tool for rapid detection and screening of H5 and H7 isolates during influenza A virus outbreaks alternatively to viral isolation.

0 Bookmarks
 · 
101 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Simultaneous and sequential allantoic cavity inoculations of Specific-pathogen-free (SPF) chicken eggs with Influenza virus (AIV) and Newcastle disease virus (NDV) demonstrated that the interaction of AIV and NDV during co-infection was variable. Our research revisited the replication interference potential of AIV and NDV using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) for AIV and NDV to specifically detect the viral genomes in mixed infections. Data from this survey showed that when different doses of NDV (Lasota or F48E8) and AIV (F98 or H5N1) were simultaneously inoculated into embryonating chicken eggs (ECE), interference with the growth of NDV occurred, while interference with the growth of AIV did not occur. When equal amount of the two viruses were sequentially employed, the degree of interference was dependent upon the time of superinfection and the virulence of virus. AIV have a negative impact on NDV growth if they are inoculated simultaneously or sequentially and that the degree of interference depended upon the quantity and relative virulence of the virus strains used; however, interference with AIV was not observed. Only if NDV were inoculated at an earlier time will NDV able to interfere with the growth of AIV.
    Virology Journal 07/2012; 9:128. · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A Rat Basophilic Leukemia (RBL) cell sensor is developed for the detection and identification of pathogenic viruses. Recombinant sdAb-Fc antibodies were constructed by linking virus-specific single domain antibody to mouse IgE-Fc fragment. The sdAb-Fc can bind to FcεRI receptors on RBL cells and can be cross-linked by target viruses leading to cell activation and Ca(2+) influx reflected by the increase of intracellular fluorescence. The responses of RBL cells to viruses in real time could be observed using fluorescence microscopy. 10(3) TCID(50) of H5N1 viruses and 10 LD(50) of rabies viruses could be detected in less than three minutes. An excess quantity of non-relevant viruses did not interfere with the recognition of target viruses.
    Biosensors & Bioelectronics 11/2012; 43C:412-418. · 6.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid and specific detection of avian influenza virus (AIV) is urgently needed due to the concerns over the potential outbreaks of highly pathogenic H5N1 influenza in animals and humans. Aptamers are artificial oligonucleic acids that can bind specific target molecules, and show comparable affinity for target viruses and better thermal stability than monoclonal antibodies. The objective of this research was to use a DNA-aptamer as the specific recognition element in a portable Surface Plasmon Resonance (SPR) biosensor for rapid detection of AIV H5N1 in poultry swab samples. A SPR biosensor was fabricated using selected aptamers that were biotinylated and then immobilized on the sensor gold surface coated with streptavidin via streptavidin-biotin binding. The immobilized aptamers captured AIV H5N1 in a sample solution, which caused an increase in the refraction index (RI). After optimizing the streptavidin and aptamer parameters, the results showed that the RI value was linearly related (R(2) = 0.99) to the concentration of AIV in the range of 0.128 to 1.28 HAU. Negligible signal (<4% of H5N1) was observed from six non-target AIV subtypes. The AIV H5N1 in poultry swab samples with concentrations of 0.128 to 12.8 HAU could be detected using this aptasensor in 1.5 h.
    Sensors 01/2012; 12(9):12506-18. · 2.05 Impact Factor

Full-text

Download
14 Downloads
Available from
May 21, 2014