Article

Conformational mAb as a tool for integrin ligand discovery.

Department of Chemistry, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA.
Assay and Drug Development Technologies (Impact Factor: 1.9). 09/2009; 7(5):507-15. DOI: 10.1089/adt.2009.0203
Source: PubMed

ABSTRACT alpha(4)beta(1)-Integrin (very late antigen-4 (VLA-4)) mediates cell adhesion to cell surface ligands (VCAM-1). Binding of VLA-4 to VCAM-1 initiates rolling and firm adhesion of leukocytes to vascular endothelium followed by the extravasation into the tissue. VLA-4-dependent adhesion plays a key role in controlling leukocyte adhesive events. Small molecules that bind to the integrin ligand-binding site and block its interaction with natural ligands represent promising candidates for treatment of several diseases. Following a flow cytometric screen for small molecule discovery, we took advantage of a conformationally sensitive anti-beta(1)-integrin antibody (HUTS-21) and a small LDV-containing ligand (LDV-FITC) with known affinity to study binding affinities of several known and recently discovered integrin ligands. We found that binding of the LDV-containing small molecule induced exposure of HUTS-21 epitope and that the EC(50) for antibody binding was equal to previously reported K(d) for fluorescent LDV (LDV-FITC). Thus, binding of HUTS-21 can be used to report ligand-binding site occupancy. We studied binding of two known integrin ligands (YLDV and TR14035), as well as of two novel compounds. EC(50) values for HUTS-21 binding showed good correlation with K(i)s determined in the competition assay with LDV-FITC for all ligands. A docking model suggests a common mode of binding for the small molecule VLA-4 ligands. This novel approach described here can be used to determine ligand-binding affinities for unlabeled integrin ligands, and can be adapted to a high-throughput screening format for identification of unknown integrin ligands.

0 Bookmarks
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interaction of the integrin receptors with ligands determines the molecular basis of integrin-dependent cell adhesion. Integrin ligands are typically large proteins with relatively low binding affinities. This makes direct ligand-binding kinetic measurements somewhat difficult. Here we examine several real-time methods, aimed to overcome these experimental limitations and to distinguish the regulation of integrin conformation and affinity. This chapter includes: the use of a small ligand-mimetic probe for studies of inside-out regulation of integrin affinity and unbending, real-time cell aggregation and disaggregation kinetics to probe integrin conformational states and the number of integrin-ligand bonds, as well as the real-time monitoring of ligand-induced epitopes under signaling through G-protein-coupled receptors, and others. Experimental data obtained using these novel methods are summarized in terms of the current model of integrin activation.
    Methods in molecular biology (Clifton, N.J.) 01/2012; 757:3-14. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ten years ago, we introduced a fluorescent probe that shed light on the inside-out regulation of one of the major leukocyte integrins, very late antigen-4 (VLA-4, CD49d/CD29). Here we describe the regulation of another leukocyte integrin, lymphocyte function-associated antigen-1 (LFA-1, CD11a/CD18) using a novel small fluorescent probe in real time on live cells. We found that multiple signaling mechanisms regulate LFA-1 conformation in a manner analogous to VLA-4. LFA-1 can be rapidly activated by Gα(i)-coupled G protein-coupled receptors (GPCRs) and deactivated by Gα(s)-coupled GPCRs. The effects of Gα(s)-coupled GPCR agonists can be reversed in real time by receptor-specific antagonists. The specificity of the fluorescent probe binding has been assessed in a competition assay using the natural LFA-1 ligand ICAM-1 and the LFA-1-specific α I allosteric antagonist BIRT0377. Similar to VLA-4 integrin, modulation of the ligand dissociation rate can be observed for different LFA-1 affinity states. However, we also found a striking difference in the binding of the small fluorescent ligand. In the absence of inside-out activation ligand, binding to LFA-1 is extremely slow, at least 10 times slower than expected for diffusion-limited binding. This implies that an additional structural mechanism prevents ligand binding to inactive LFA-1. We propose that such a mechanism explains the inability of LFA-1 to support cell rolling, where the absence of its rapid engagement by a counterstructure in the inactive state leads to a requirement for a selectin-mediated rolling step.
    Journal of Biological Chemistry 06/2011; 286(23):20375-86. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Academia and small business research units are poised to play an increasing role in drug discovery, with drug repurposing as one of the major areas of activity. Here we summarize project status for a number of drugs or classes of drugs: raltegravir, cyclobenzaprine, benzbromarone, mometasone furoate, astemizole, R-naproxen, ketorolac, tolfenamic acid, phenothiazines, methylergonovine maleate and beta-adrenergic receptor drugs, respectively. Based on this multi-year, multi-project experience we discuss strengths and weaknesses of academic-based drug repurposing research. Translational, target and disease foci are strategic advantages fostered by close proximity and frequent interactions between basic and clinical scientists, which often result in discovering new modes of action for approved drugs. On the other hand, lack of integration with pharmaceutical sciences and toxicology, lack of appropriate intellectual coverage and issues related to dosing and safety may lead to significant drawbacks. The development of a more streamlined regulatory process world-wide, and the development of pre-competitive knowledge transfer systems such as a global healthcare database focused on regulatory and scientific information for drugs world-wide, are among the ideas proposed to improve the process of academic drug discovery and repurposing, and to overcome the "valley of death" by bridging basic to clinical sciences.
    Drug Discovery Today Therapeutic Strategies 01/2011; 8(3-4):61-69.

Full-text (2 Sources)

View
26 Downloads
Available from
May 23, 2014