Novel minicircle vector for gene therapy in murine myocardial infarction.

Department of Radiology, Stanford University School of Medicine, CA 94305-5344, USA.
Circulation (Impact Factor: 14.95). 09/2009; 120(11 Suppl):S230-7. DOI: 10.1161/CIRCULATIONAHA.108.841155
Source: PubMed

ABSTRACT Conventional plasmids for gene therapy produce low-level and short-term gene expression. In this study, we develop a novel nonviral vector that robustly and persistently expresses the hypoxia-inducible factor-1 alpha (HIF-1alpha) therapeutic gene in the heart, leading to functional benefits after myocardial infarction.
We first created minicircles (MC) carrying double-fusion reporter gene consisting of firefly luciferase and enhanced green fluorescent protein (Fluc-eGFP) for noninvasive measurement of transfection efficiency. Mouse C2C12 myoblasts and normal FVB/N mice were used for in vitro and in vivo confirmation, respectively. Bioluminescence imaging showed stable MC gene expression in the heart for >12 weeks and the activity level was 5.6+/-1.2-fold stronger than regular plasmid at day 4 (P<0.01). Next, we created MC carrying HIF-1alpha (MC-HIF-1alpha) therapeutic gene for treatment of myocardial infarction. Adult FVB/N mice underwent left anterior descending ligation and were injected intramyocardially with: (1) MC-HIF-1alpha; (2) regular plasmid carrying HIF-1alpha (PL-HIF-1alpha) as positive control; and (3) PBS as negative control (n=10/group). Echocardiographic study showed a significantly greater improvement of left ventricular ejection fraction in the MC group (51.3%+/-3.6%) compared to regular plasmid group (42.3%+/-4.1%) and saline group (30.5%+/-2.8%) at week 4 (P<0.05 for both). Histology demonstrated increased neoangiogenesis in both treatment groups. Finally, Western blot showed MC express >50% higher HIF-1alpha level than regular plasmid.
Taken together, this is the first study to our knowledge to demonstrate that MC can significantly improve transfection efficiency, duration of transgene expression, and cardiac contractility. Given the serious drawbacks associated with most viral vectors, we believe this novel nonviral vector can be of great value for cardiac gene therapy protocols.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeted genetic modification using programmable nucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) is of great value in biomedical research, medicine and biotechnology. Minicircle vectors, which lack extraneous bacterial sequences, have several advantages over conventional plasmids for transgene delivery. Here, for the first time, we delivered programmable nucleases into human cells using transient transfection of a minicircle vector and compared the results with those obtained using a conventional plasmid. Surrogate reporter assays and T7 endonuclease analyses revealed that cells in the minicircle vector group displayed significantly higher mutation frequencies at the target sites than those in the conventional plasmid group. Quantitative PCR and reverse transcription-PCR showed higher vector copy number and programmable nuclease transcript levels, respectively, in 293T cells after minicircle versus conventional plasmid vector transfection. In addition, tryphan blue staining and flow cytometry after annexin V and propidium iodide staining showed that cell viability was also significantly higher in the minicircle group than in the conventional plasmid group. Taken together, our results show that gene disruption using minicircle vector-mediated delivery of ZFNs and TALENs is a more efficient, safer and less toxic method than using a conventional plasmid, and indicate that the minicircle vector could serve as an advanced delivery method for programmable nucleases.Gene Therapy advance online publication, 21 August 2014; doi:10.1038/gt.2014.76.
    Gene Therapy 08/2014; · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytotoxic T lymphocyte-associated antigen 4 immunoglobulin fusion protein (CTLA4Ig, abatacept) is a B7/CD28 costimulation inhibitor that can ward off the immune response by preventing the activation of naïve T cells. This therapeutic agent is administered to patients with autoimmune diseases such as rheumatoid arthritis. Its antiarthritic efficacy is satisfactory, but the limitations are the necessity for frequent injection and high cost. Minicircles can robustly express the target molecule and excrete it outside the cell as an indirect method to produce the protein of interest in vivo. We inserted the sequence of abatacept into the minicircle vector, and by successful in vivo injection the host was able to produce the synthetic protein drug. Intravenous infusion of the minicircle induced spontaneous production of CTLA4Ig in mice with collagen-induced arthritis. Self-produced CTLA4Ig significantly decreased the symptoms of arthritis. Injection of minicircle CTLA4Ig regulated Foxp3(+) T cells and Th17 cells. Parental and mock vectors did not ameliorate arthritis or modify the T cell population. We have developed a new concept of spontaneous protein drug delivery using a minicircle vector. Self in vivo production of a synthetic protein drug may be useful when biological drugs cannot be injected because of manufacturing or practical problems.
    Scientific Reports 11/2014; 4:6935. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biologics are the most successful drugs used in anticytokine therapy. However, they remain partially unsuccessful because of the elevated cost of their synthesis and purification. Development of novel biologics has also been hampered by the high cost. Biologics are made of protein components; thus, theoretically, they can be produced in vivo. Here we tried to invent a novel strategy to allow the production of synthetic drugs in vivo by the host itself. The recombinant minicircles encoding etanercept or tocilizumab, which are synthesized currently by pharmaceutical companies, were injected intravenously into animal models. Self-reproduced etanercept and tocilizumab were detected in the serum of mice. Moreover, arthritis subsided in mice that were injected with minicircle vectors carrying biologics. Self-reproducible biologics need neither factory facilities for drug production nor clinical processes, such as frequent drug injection. Although this novel strategy is in its very early conceptual stage, it seems to represent a potential alternative method for the delivery of biologics.
    Scientific Reports 08/2014; 4:5961. · 5.08 Impact Factor


Available from
Jun 4, 2014