Chest Compression Fraction Determines Survival in Patients With Out-of-Hospital Ventricular Fibrillation

MSc, Emergency and Health Services Commission of British Columbia, 302-2955 Virtual Way, Vancouver, British Columbia, Canada V5M 4X6.
Circulation (Impact Factor: 14.43). 09/2009; 120(13):1241-7. DOI: 10.1161/CIRCULATIONAHA.109.852202
Source: PubMed


Quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The proportion of time in which chest compressions are performed in each minute of cardiopulmonary resuscitation is an important modifiable aspect of quality cardiopulmonary resuscitation. We sought to estimate the effect of an increasing proportion of time spent performing chest compressions during cardiac arrest on survival to hospital discharge in patients with out-of-hospital ventricular fibrillation or pulseless ventricular tachycardia.
This is a prospective observational cohort study of adult patients from the Resuscitation Outcomes Consortium Cardiac Arrest Epistry with confirmed ventricular fibrillation or ventricular tachycardia, no defibrillation before emergency medical services arrival, electronically recorded cardiopulmonary resuscitation before the first shock, and a confirmed outcome. Patients were followed up to discharge from the hospital or death. Of the 506 cases, the mean age was 64 years, 80% were male, 71% were witnessed by a bystander, 51% received bystander cardiopulmonary resuscitation, 34% occurred in a public location, and 23% survived. After adjustment for age, gender, location, bystander cardiopulmonary resuscitation, bystander witness status, and response time, the odds ratios of surviving to hospital discharge in the 2 highest categories of chest compression fraction compared with the reference category were 3.01 (95% confidence interval 1.37 to 6.58) and 2.33 (95% confidence interval 0.96 to 5.63). The estimated adjusted linear effect on odds ratio of survival for a 10% change in chest compression fraction was 1.11 (95% confidence interval 1.01 to 1.21).
An increased chest compression fraction is independently predictive of better survival in patients who experience a prehospital ventricular fibrillation/tachycardia cardiac arrest.

Download full-text


Available from: Tom P Aufderheide,
  • Source
    • "IGH-QUALITY cardiopulmonary resuscitation (CPR) requires minimizing interruptions of chest compressions, as interruptions reduce blood flow and, thus, the chance of achieving return of spontaneous circulation (ROSC) [1]–[5]. International guidelines state that interruptions for ROSC assessment should last at most 10 s [2], [3]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Detecting return of spontaneous circulation (ROSC) during cardiopulmonary resuscitation (CPR) is challenging, timeconsuming, and requires interrupting chest compressions. Based on automated-CPR porcine data, we have developed an algorithm to support ROSC detection, which detects cardiogenic output during chest compressions via a photoplethysmography (PPG) signal. The algorithm can detect palpable and impalpable spontaneous pulses. A compression-free PPG signal which estimates the spontaneous pulse waveform, was obtained by subtracting the compression component, modeled by a harmonic series. The fundamental frequency of this series was the compression rate derived from the trans-thoracic impedance signal measured between the defibrillation pads. The amplitudes of the harmonic components were obtained via a least mean-square algorithm. The frequency spectrum of the compression-free PPG signal was estimated via an autoregressive model, and the relationship between the spectral peaks was analyzed to identify the pulse rate (PR). Resumed cardiogenic output could also be detected from a decrease in the baseline of the PPG signal, presumably caused by a redistribution of blood volume to the periphery. The algorithm indicated cardiogenic output when a PR or a redistribution of blood volume was detected. The algorithm indicated cardiogenic output with 94% specificity and 69% sensitivity compared to the retrospective ROSC detection of nine clinicians. Results showed that ROSC detection can be supported by combining the compression-free PPG signal with an indicator based on the detected PR and redistribution of blood volume.
    IEEE transactions on bio-medical engineering 11/2014; 62(3). DOI:10.1109/TBME.2014.2370649 · 2.35 Impact Factor
  • Source
    • "The 2010 CoSTR Statement emphasised the need for improving the quality of CPR to increase patient survival after cardiac arrest [5]. Christenson et al. reported that the chest compression fraction appears to be an important determinant of survival from cardiac arrest [13]. It was also reported that shallower chest compressions correlated significantly with a decrease in successful defibrillation [14,15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The 2010 Consensus on Science and Treatment Recommendations Statement recommended that short video/computer self-instruction courses, with minimal or no instructor coaching, combined with hands-on practice can be considered an effective alternative to instructor-led basic life support courses. The purpose of this study was to examine the effectiveness of a simplified cardiopulmonary resuscitation (CPR) training program for non-medical staff working at a university hospital. Methods Before and immediately after a 45-min CPR training program consisting of instruction on chest compression and automated external defibrillator (AED) use with a personal training manikin, CPR skills were automatically recorded and evaluated. Participants’ attitudes towards CPR were evaluated by a questionnaire survey. Results From September 2011 through March 2013, 161 participants attended the program. We evaluated chest compression technique in 109 of these participants. The number of chest compressions delivered after the program versus that before was significantly greater (110.8 ± 13.0/min vs 94.2 ± 27.4/min, p < 0.0001), interruption of chest compressions was significantly shorter (0.05 ± 0.34 sec/30 sec vs 0.89 ± 3.52 sec/30 sec, p < 0.05), mean depth of chest compressions was significantly greater (57.6 ± 6.8 mm vs 52.2 ± 9.4 mm, p < 0.0001), and the proportion of incomplete chest compressions of <5 cm among all chest compressions was significantly decreased (8.9 ± 23.2% vs 38.6 ± 42.9%, p < 0.0001). Of the 159 participants who responded to the questionnaire survey after the program, the proportion of participants who answered ‘I can check for a response,’ ‘I can perform chest compressions,’ and ‘I can absolutely or I think I can use an AED’ increased versus that before the program (81.8% vs 19.5%, 77.4% vs 10.1%, 84.3% vs 23.3%, respectively). Conclusions A 45-min simplified CPR training program on chest compression and AED use improved CPR quality and the attitude towards CPR and AED use of non-medical staff of a university hospital.
    Scandinavian Journal of Trauma Resuscitation and Emergency Medicine 05/2014; 22(1):31. DOI:10.1186/1757-7241-22-31 · 2.03 Impact Factor
  • Source
    • "While resuscitation outcomes are improving, far too many children will suffer a neurological injury after their event [3] [4]. As resuscitation quality is associated with cardiac arrest outcome [5] [6] [7] [8] [9], recent "
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to evaluate the effect of instituting the 2010 Basic Life Support Guidelines on in-hospital pediatric and adolescent cardiopulmonary resuscitation (CPR) quality. We hypothesized that quality would improve, but that targets for chest compression (CC) depth would be difficult to achieve. Prospective in-hospital observational study comparing CPR quality 24 months before and after release of the 2010 Guidelines. CPR recording/feedback-enabled defibrillators collected CPR data (rate (CC/min), depth (mm), CC fraction (CCF, %), leaning (%>2.5kg.)). Audiovisual feedback for depth was: 2005 ≥ 38mm; 2010 ≥ 50mm; for rate: 2005 ≥ 90 and ≤ 120 CC/min; 2010 ≥ 100 and ≤ 120 CC/min. The primary outcome was average event depth compared with Student's t-test. 45 CPR events (25 before; 20 after) occurred, resulting in 1336 thirty-second epochs (909 before; 427 after). Compared to 2005, average event depth (50±13 vs. 43±9mm; p=0.047), rate (113±11 vs. 104±8 CC/min; p<0.01), and CCF (0.94 [0.93, 0.96] vs. 0.9 [0.85, 0.94]; p=0.013) increased during 2010. CPR epochs during the 2010 period more likely to meet Guidelines for CCF (OR 1.7; CI95: 1.2-2.4; p<0.01), but less likely for rate (OR 0.23; CI95: 0.12-0.44; p<0.01), and depth (OR 0.31; CI95: 0.12-0.86; p=0.024). Institution of the 2010 Guidelines was associated with increased CC depth, rate, and CC fraction; yet, achieving 2010 targets for rate and depth was difficult.
    Resuscitation 08/2013; 84(12). DOI:10.1016/j.resuscitation.2013.07.029 · 4.17 Impact Factor
Show more