Article

Membrane protein GARP is a receptor for latent TGF-β on the surface of activated human Treg

de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
European Journal of Immunology (Impact Factor: 4.52). 12/2009; 39(12):3315-22. DOI: 10.1002/eji.200939684
Source: PubMed

ABSTRACT Human Treg and Th clones secrete the latent form of TGF-beta, in which the mature TGF-beta protein is bound to the latency-associated peptide (LAP), and is thereby prevented from binding to the TGF-beta receptor. We previously showed that upon TCR stimulation, human Treg clones but not Th clones produce active TGF-beta and bear LAP on their surface. Here, we show that latent TGF-beta, i.e. both LAP and mature TGF-beta, binds to glycoprotein A repetitions predominant (GARP), a transmembrane protein containing leucine rich repeats, which is present on the surface of stimulated Treg clones but not on Th clones. Membrane localization of latent TGF-beta mediated by binding to GARP may be necessary for the ability of Treg to activate TGF-beta upon TCR stimulation. However, it is not sufficient as lentiviral-mediated expression of GARP in human Th cells induces binding of latent TGF-beta to the cell surface, but does not result in the production of active TGF-beta upon stimulation of these Th cells.

Download full-text

Full-text

Available from: Julie Stockis, Oct 13, 2014
2 Followers
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding tolerance mechanisms at the cellular and molecular level holds the promise to establish novel immune intervention therapies in patients with allergy or autoimmunity and to prevent transplant rejection. Administration of mAb against the CD4 molecule has been found to be exceptionally well suited for intentional tolerance induction in rodent and non-human primate models as well as in humanized mouse models. Recent evidence demonstrated that regulatory T cells (Treg) are directly activated by non-depleting CD4 ligands and suggests Treg activation as a central mechanism in anti-CD4-mediated tolerance induction. This review summarizes the current knowledge on the role of Treg in peripheral tolerance, addresses the putative mechanisms of Treg-mediated suppression and discusses the clinical potential of harnessing Treg suppressive activity through CD4 stimulation.
    Frontiers in Immunology 06/2012; 3:164. DOI:10.3389/fimmu.2012.00164
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased numbers of T regulatory cells (Tregs), key mediators of immune homeostasis, were reported in human and murine malaria and it is current opinion that these cells play a role in balancing protective immunity and pathogenesis during infection. However, the mechanisms governing their expansion during malaria infection are not completely defined. In this article we show that soluble extracts of Plasmodium falciparum (PfSEs), but not equivalent preparation of uninfected erythrocytes, induce the differentiation of polyclonally activated CD4(+) cells in Tregs endowed with strong suppressive activity. PfSEs activate latent TGFβ bound on the membrane of Treg cells, thus allowing the cytokine interaction with TGFβ receptor, and inducing Foxp3 gene expression and TGFβ production. The activation of membrane-bound latent TGFβ by PfSEs is significantly reduced by a broad-spectrum metalloproteinases inhibitor with Zn(++) -chelating activity, and completely inhibited by the combined action of such inhibitor and antibodies to a P. falciparum thrombospondin-related adhesive protein (PfTRAP). We conclude that Pf-Zn(++) -dependent proteinases and, to a lesser extent, PfTRAP molecules are involved in the activation of latent TGFβ bound on the membrane of activated Treg cells and suggest that, in malaria infection, this mechanism could contribute to the expansion of Tregs with different antigen specificity.
    Cellular Microbiology 06/2011; 13(9):1328-38. DOI:10.1111/j.1462-5822.2011.01622.x · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T cells (Tregs) are essential to prevent autoimmunity, but excessive Treg function contributes to cancer progression by inhibiting antitumor immune responses. Tregs exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-β1 (TGF-β1). On the Treg cell surface, TGF-β1 is in an inactive form bound to membrane protein GARP and then activated by an unknown mechanism. We demonstrate that GARP is involved in this activation mechanism. Two anti-GARP monoclonal antibodies were generated that block the production of active TGF-β1 by human Tregs. These antibodies recognize a conformational epitope that requires amino acids GARP137-139 within GARP/TGF-β1 complexes. A variety of antibodies recognizing other GARP epitopes did not block active TGF-β1 production by Tregs. In a model of xenogeneic graft-versus-host disease in NSG mice, the blocking antibodies inhibited the immunosuppressive activity of human Tregs. These antibodies may serve as therapeutic tools to boost immune responses to infection or cancer via a mechanism of action distinct from that of currently available immunomodulatory antibodies. Used alone or in combination with tumor vaccines or antibodies targeting the CTLA4 or PD1/PD-L1 pathways, blocking anti-GARP antibodies may improve the efficiency of cancer immunotherapy. Copyright © 2015, American Association for the Advancement of Science.
    Science translational medicine 04/2015; 7(284):284ra56. DOI:10.1126/scitranslmed.aaa1983 · 14.41 Impact Factor