Article

Adenosine Suppresses Lipopolysaccharide-Induced Tumor Necrosis Factor-alpha Production by Murine Macrophages through a Protein Kinase A- and Exchange Protein Activated by cAMP-Independent Signaling Pathway

Medical College of Wisconsin, Milwaukee, Wisconsin, United States
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 09/2009; 331(3):1051-61. DOI: 10.1124/jpet.109.157651
Source: PubMed

ABSTRACT Adenosine is generated during tissue hypoxia and stress, which reduces inflammation by suppressing the activity of most immune cells. Among its various actions, adenosine suppresses the production of proinflammatory cytokines including tumor necrosis factor (TNF)-alpha, through the cAMP-elevating A(2A) adenosine receptor (AR) subtype. In this study, we examined the signaling mechanisms by which A(2A)AR activation inhibits TNF-alpha production in thioglycollate-elicited mouse peritoneal macrophages. Pretreating murine macrophages with the nonselective AR agonist adenosine-5'-N-ethylcarboxamide (NECA), the A(2A)AR agonist 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680), or the cAMP-elevating agent forskolin reduced TNF-alpha production in response to lipopolysaccharide (LPS) by greater than 60%. All of these agents increased cAMP production in macrophages and activated protein kinase A (PKA). However, we were surprised to find that treating macrophages with three different PKA inhibitors or small interfering RNA-mediated knockdown of the exchange protein activated by cAMP (Epac-1) failed to block the suppressive actions of NECA or forskolin on LPS-induced TNF-alpha release. Instead, okadaic acid was effective at low concentrations that selectively inhibit protein serine/threonine phosphatases. Subsequent studies showed that NECA and forskolin decreased LPS-induced steady-state TNF-alpha mRNA levels; this effect was due to a decreased rate of transcription based on assays examining the rate of generation of primary TNF-alpha transcripts. Treatment with NECA or forskolin did not interfere with LPS-induced translocation or DNA binding of the RelA/p65 subunit of nuclear factor-kappaB or phosphorylation of inhibitor of nuclear factor-kappaB-alpha, extracellular signal-regulated kinase 1/2, c-Jun NH(2)-terminal kinase, or p38 kinase. Our results suggest that AR activation inhibits LPS-induced TNF-alpha production by murine macrophages at the level of gene transcription through a unique cAMP-dependent, but PKA- and Epac-independent, signaling pathway involving protein phosphatase activity.

0 Followers
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Roflumilast is the first phosphodiesterase-4 (PDE4) inhibitor to have been approved for the treatment of COPD. The anti-inflammatory profile of PDE4 inhibitors has not yet been explored in human lung tissues. We investigated the effects of roflumilast and its active metabolite roflumilast-N-oxide on the lipopolysaccharide (LPS)-induced release of tumor necrosis factor-alpha (TNF-α) and chemokines by human lung parenchymal explants. We also investigated roflumilast's interaction with the long-acting β2-agonist formoterol. Explants from 25 patients undergoing surgical lung resection were incubated with Roflumilast, Roflumilast-N-oxide and formoterol and stimulated with LPS. Levels of TNF-α, chemokines (in the culture supernatants) and cyclic adenosine monophosphate (in tissue homogenates) were determined with appropriate immunoassays. Roflumilast and Roflumilast-N-oxide concentration-dependently reduced the release of TNF-α and chemokines CCL2, CCL3, CCL4, CXCL9 and CXCL10 from LPS-stimulated human lung explants, whereas CXCL1, CXCL5 and CXCL8 release was not altered. Formoterol (10 nM) partially decreased the release of the same cytokines and significantly increased the inhibitory effect of roflumilast on the release of the cytokines. In human lung parenchymal explants, roflumilast and roflumilast-N-oxide reduced the LPS-induced release of TNF-α and chemokines involved in the recruitment of monocytes and T-cells but not those involved in the recruitment of neutrophils. Addition of formoterol to roflumilast provided superior in vitro anti-inflammatory activity, which may translate into greater efficacy in COPD.
    PLoS ONE 09/2013; 8(9):e74640. DOI:10.1371/journal.pone.0074640 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Adenosine is a potent endogenous anti-inflammatory and immunoregulatory molecule. Despite its promise, adenosine’s extremely short half-life in blood limits its clinical application. Here, we examined adenosine N1-oxide (ANO), which is found in royal jelly. ANO is an oxidized product of adenosine at the N1 position of the adenine base moiety. We found that it is refractory to adenosine deaminase-mediated conversion to inosine. We further examined the anti-inflammatory activities of ANO in vitro and in vivo. Methods The effect of ANO on pro-inflammatory cytokine secretion was examined in mouse peritoneal macrophages and the human monocytic cell line THP-1, and compared with that of adenosine, synthetic adenosine receptor (AR)-selective agonists and dipotassium glycyrrhizate (GK2). The anti-inflammatory activity of ANO in vivo was examined in an LPS-induced endotoxin shock model in mice. Results ANO inhibited secretion of inflammatory mediators at much lower concentrations than adenosine and GK2 when used with peritoneal macrophages and THP-1 cells that were stimulated by LPS plus IFN-γ. The potent anti-inflammatory activity of ANO could not be solely accounted for by its refractoriness to adenosine deaminase. ANO was superior to the synthetic A1 AR-selective agonist, 2-chloro-N6-cyclopentyladenosine (CCPA), A2A AR-selective agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5’-N-ethylcarboxamideadenosine hydrochloride (CGS21680), and A3 AR-selective agonist, N6-(3-iodobenzyl)adenosine-5’-N-methyluronamide (IB-MECA), in suppressing the secretion of a broad spectrum of pro-inflammatory cytokines by peritoneal macrophages. The capacities of ANO to inhibit pro-inflammatory cytokine production by THP-1 cells were comparable with those of CCPA and IB-MECA. Reflecting its potent anti-inflammatory effects in vitro, intravenous administration of ANO significantly reduced lethality of LPS-induced endotoxin shock. A significant increase in survival rate was also observed by oral administration of ANO. Mechanistic analysis suggested that the up-regulation of the anti-inflammatory transcription factor c-Fos was, at least in part, involved in the ANO-induced suppression of pro-inflammatory cytokine secretion. Conclusions Our data suggest that ANO, a naturally occurring molecule that is structurally close to adenosine but is functionally more potent, presents potential strategies for the treatment of inflammatory disorders.
    Journal of Inflammation 01/2015; 12(1). DOI:10.1186/s12950-014-0045-0 · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in a chronic constriction injury (CCI) model of neuropathic pain. We aimed to determine if this long-term reversal was induced by A2AR agonism versus more generalized across adenosine receptor subtypes, and begin to explore the intracellular signaling cascades involved. In addition, we sought to identify whether the enduring effect could be extended to other models of neuropathic pain. We tested an A1R and A2BR agonist in CCI and found the same long duration effect with A2BR but not A1R agonism. An A2AR agonist (ATL313) produced a significant long-duration reversal of mechanical allodynia induced by long established CCI (administered 6 wk after surgery), spinal nerve ligation and sciatic inflammatory neuropathy. To determine if ATL313 had a direct effect on glia, ATL313 was coadministered with lipopolysaccharide to neonatal microglia and astrocytes in vitro. ATL313 significantly attenuated TNFα production in both microglia and astrocytes but had no effect on LPS induced IL-10. Protein kinase C significantly reversed the ATL313 effects on TNFα in vitro in microglia and astrocytes, while a protein kinase A inhibitor only effected microglia. Both intrathecal PKA and PKC inhibitors significantly reversed the effect of the A2AR agonist on neuropathic allodynia. Therefore, A2AR agonists administered IT remain an exciting novel target for the treatment of neuropathic pain.
    Brain Behavior and Immunity 06/2013; 33. DOI:10.1016/j.bbi.2013.06.004 · 6.13 Impact Factor

Preview

Download
0 Downloads
Available from

Similar Publications