Article

The anti-leukaemic activity of novel synthetic naphthoquinones against acute myeloid leukaemia: induction of cell death via the triggering of multiple signalling pathways.

Institute of Haematology, Soroka University Medical Centre, Beer-Sheva, Israel.
British Journal of Haematology (Impact Factor: 4.96). 08/2009; 147(4):459-70. DOI: 10.1111/j.1365-2141.2009.07867.x
Source: PubMed

ABSTRACT Naphthoquinones, such as menadione, display lower toxicity than anthracyclins used in cancer chemotherapy. Novel anti-leukaemic compounds comprised of chloro-amino-phenyl naphthoquinones with substitutions on the benzoic ring were developed. Structure-activity relationship studies indicated that the analogue with both methyl and amine substitutions (named TW-92) was the most efficient in killing leukaemic cells. Treatment of U-937 promonocytic cells with TW-92 induced apoptotic or necrotic cell death, dependent on incubation and dose conditions. TW-92 induced rapid phosphorylation of p38 mitogen-activated protein kinase (p38(MAPK)) and of extracellular signal-regulated protein kinases (ERK1/2). The generation of apoptosis was preceded by intracellular H(2)O(2) accumulation accompanied by glutathione depletion, the former inhibited by di-phenyl-iodonium (DPI), an inhibitor of NADPH oxidase. TW-92 induced swelling of isolated rat liver mitochondria, indicative of a direct effect on mitochondria. Apoptosis in intact cells was accompanied by a decrease in mitochondrial membrane potential, cytochrome c release and caspase activation. In addition, the level of Mcl-1, an anti-apoptotic regulatory protein, was down-regulated, whereas the expression of the pro-apoptotic BAX was elevated. Finally, TW-92 exerted strong pro-apoptotic and necrotic effects in primary acute myeloid leukaemia samples when given in submicromolar concentrations. Together, these findings demonstrate that TW-92 may provide an effective anti-leukaemic strategy.

Download full-text

Full-text

Available from: Yossf Granot, Oct 17, 2014
0 Followers
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Four novel 6-aminocoumarin-naphthoquinone conjugates were synthesized and their photophysical and electrochemical properties, investigated. 2-Chloro-3-(2-oxo-2H-chromen-6-ylamino)-1,4-naphthoquinone 1 did not present appreciable fluorescence in solution in comparison with 6-aminocoumarin, 6-AC. In order to understand the reasons for the fluorescence quenching in this compound, two strategies were attempted. Firstly, compound 1 was N-methylated to remove the intramolecular N-H...O=C electrostatic interaction that maintained the two units fixed, but the emission properties of the product 2 were not significantly different from those of 1. Time-dependent density functional theory (TD-DFT) calculations of compounds 1 and 2 indicate that the fluorescence quenching is related to the electron acceptor character of the naphthoquinone ring. The second strategy, therefore, involved the substitution of the chlorine atom in position 2 of the naphthoquinone nucleus for different electron donor groups (compounds 3-5), but again the emission properties did not change significantly. To explain these experimental findings, TD-DFT calculations of the ground (S0) and excited (S1) states of all molecules in solution were carried out. The results suggest that the energy states in these conjugates are such that the fluorescent group (6-AC) donates electrons to the naphthoquinone LUMO resulting in an oxidative photoinduced electron transfer (oxidative-PET).
    Journal of the Brazilian Chemical Society 01/2014; 25(1):133-142. DOI:10.5935/0103-5053.20130279 · 1.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dimeric naphthoquinones (BiQ) were originally synthesized as a new class of HIV integrase inhibitors but have shown integrase-independent cytotoxicity in acute lymphoblastic leukemia cell lines suggesting their use as potential anti-neoplastic agents. The mechanism of this cytotoxicity is unknown. In order to gain insight into the mode of action of binaphthoquinones we performed a systematic high-throughput screen in a yeast isogenic deletion mutant array for enhanced or suppressed growth in the presence of binaphthoquinones. Exposure of wild type yeast strains to various BiQs demonstrated inhibition of yeast growth with IC(50)s in the microM range. Drug sensitivity and resistance screens were performed by exposing arrays of a haploid yeast deletion mutant library to BiQs at concentrations near their IC(50). Sensitivity screens identified yeast with deletions affecting mitochondrial function and cellular respiration as having increased sensitivity to BiQs. Corresponding to this, wild type yeast grown in the absence of a fermentable carbon source were particularly sensitive to BiQs, and treatment with BiQs was shown to disrupt the mitochondrial membrane potential and lead to the generation of reactive oxygen species (ROS). Furthermore, baseline ROS production in BiQ sensitive mutant strains was increased compared to wild type and could be further augmented by the presence of BiQ. Screens for resistance to BiQ action identified the mitochondrial external NAD(P)H dehydrogenase, NDE1, as critical to BiQ toxicity and over-expression of this gene resulted in increased ROS production and increased sensitivity of wild type yeast to BiQ. In yeast, binaphthoquinone cytotoxicity is likely mediated through NAD(P)H:quonine oxidoreductases leading to ROS production and dysfunctional mitochondria. Further studies are required to validate this mechanism in mammalian cells.
    PLoS ONE 05/2010; 5(5):e10846. DOI:10.1371/journal.pone.0010846 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiolipin (CL) is a unique anionic, dimeric phospholipid found almost exclusively in the inner mitochondrial membrane and is essential for the function of numerous enzymes that are involved in mitochondrial energy metabolism. While the role of cardiolipin in apoptosis is well established, its involvement in necrosis is enigmatic. In the present study, KCN-induced necrosis in U937 cells was used as an experimental model to assess the role of CL in necrosis. KCN addition to U937 cells induced reactive oxygen species (ROS) formation, while the antioxidants inhibited necrosis, indicating that ROS play a role in KCN-induced cell death. Further, CL oxidation was confirmed by the monomer green fluorescence of 10-N-nonyl acridine orange (NAO) and by TLC. Utilizing the red fluorescence of the dimeric NAO, redistribution of CL in mitochondrial membrane during necrosis was revealed. We also showed that the catalytic activity of purified adenosine triphosphate (ATP) synthase complex, known to be modulated by cardiolipin, decreased following KCN treatment. All these events occurred at an early phase of the necrotic process prior to rupture of the cell membrane. Furthermore, CL-deficient HeLa cells were found to be resistant to KCN-induced necrosis as compared with the wild type cells. We suggest that KCN, an effective reversible inhibitor of cytochrome oxidase and thereby of the respiratory chain leads to ROS increase, which in turn oxidizes CL (amongst other membrane phospholipids) and leads to mitochondrial membrane lipid reorganization and loss of CL symmetry. Finally, the resistance of CL-deficient cells to necrosis further supports the notion that CL, which undergoes oxidation during necrotic cell death, is an integral part of the milieu of events taking place in mitochondria leading to membrane disorganization and mitochondrial dysfunction.
    Chemistry and Physics of Lipids 07/2014; DOI:10.1016/j.chemphyslip.2014.06.007 · 2.59 Impact Factor