Article

Proteomics Analysis Reveals Novel Components in the Detergent-Insoluble Subproteome in Alzheimer's Disease

Department of Neurology, Emory University, Atlanta, Georgia 30322, USA.
Journal of Proteome Research (Impact Factor: 5). 09/2009; 8(11):5069-79. DOI: 10.1021/pr900474t
Source: PubMed

ABSTRACT Neurodegenerative diseases are often defined pathologically by the presence of protein aggregates. These aggregates, including amyloid plaques in Alzheimer's disease (AD), result from the abnormal accumulation and processing of proteins, and may ultimately lead to neuronal dysfunction and cell death. To date, conventional biochemical studies have revealed abundant core components in protein aggregates. However, rapidly improving proteomics technologies offer opportunities to revisit pathologic aggregate composition, and to identify less abundant but potentially important functional molecules that participate in neurodegeneration. The purpose of this study was to establish a proteomic strategy for the profiling of neurodegenerative disease tissues for disease-specific changes in protein abundance. Using high resolution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), we analyzed detergent-insoluble frontal cortex samples from AD and unaffected control cases. In addition, we analyzed samples from frontotemporal lobar degeneration (FTLD) cases to identify AD-specific changes not present in other neurodegenerative diseases. We used a labeling-free quantification technique to compare the abundance of identified peptides in the samples based on extracted ion current (XIC) of their corresponding ions. Of the 512 identified proteins, quantitation demonstrated significant changes in 81 AD-specific proteins. Following additional manual filtering, 11 proteins were accepted with high confidence as increased in AD compared to control and FTLD brains, including beta-amyloid, tau and apolipoprotein E, all well-established AD-linked proteins. In addition, we identified and validated the presence of serine protease 15, ankyrin B, and 14-3-3 eta in the detergent-insoluble fraction. Our results provide further evidence for the capacity of proteomics applications to identify conserved sets of disease-specific proteins in AD, to enhance our understanding of disease pathogenesis, and to deliver new candidates for the development of effective therapies for this, and other, devastating neurodegenerative disorders.

Download full-text

Full-text

Available from: Duc Duong, Jun 03, 2014
1 Follower
 · 
174 Views
  • Source
    • "Postmortem AD brain samples have been extensively investigated by numerous proteomics platforms [33] [34] [35] [36] [37] [38], but systematic analysis of AD phosphoproteome has rarely reported [39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive loss of cognitive function. One of the pathological hallmarks of AD is the formation of neurofibrillary tangles composed of abnormally hyperphosphorylated tau protein, but global deregulation of protein phosphorylation in AD is not well analyzed. Here we report a pilot investigation of AD phosphoproteome by titanium dioxide enrichment coupled with high resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). During the optimization of the enrichment method, we found that phosphate ion at a low concentration (e.g. 1 mM) worked efficiently as a non-phosphopeptide competitor to reduce background. The procedure was further tuned with respect to peptide-to-bead ratio, phosphopeptide recovery and purity. Using this refined method and 9 h LC-MS/MS, we analyzed phosphoproteome in one milligram of digested AD brain lysate, identifying 5243 phosphopeptides containing 3715 non-redundant phosphosites on 1455 proteins, including 31 phosphosites on the tau protein. This modified enrichment method is simple and highly efficient. The AD case study demonstrates its feasibility of dissecting phosphoproteome in a limited amount of postmortem human brain.This article is protected by copyright. All rights reserved
    Proteomics 10/2014; 15(2-3). DOI:10.1002/pmic.201400171 · 3.97 Impact Factor
  • Source
    • "Peptide retention time was measured between replicate LC-MS/MS runs using in-house software as described previously [23] "
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study is a discovery mode proteomics analysis of the membrane-enriched fraction of postmortem brain tissue from Alzheimer's disease (AD) and control cases. This study aims to validate a method to identify new proteins that could be involved in the pathogenesis of AD and potentially serve as disease biomarkers. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze the membrane-enriched fraction of human postmortem brain tissue from five AD and five control cases of similar age. Biochemical validation of specific targets was performed by immunoblotting. One thousand seven hundred and nine proteins were identified from the membrane-enriched fraction of frontal cortex. Label-free quantification by spectral counting and G-test analysis identified 13 proteins that were significantly changed in disease. In addition to Tau (MAPT), two additional proteins found to be enriched in AD, ubiquitin carboxy-terminal hydrolase 1 (UCHL1), and syntaxin-binding protein 1 (Munc-18), were validated through immunoblotting. DISCUSSION AND CLINICAL RELEVANCE: Proteomic analysis of the membrane-enriched fraction of postmortem brain tissue identifies proteins biochemically altered in AD. Further analysis of this subproteome may help elucidate mechanisms behind AD pathogenesis and provide new sources of biomarkers.
    PROTEOMICS - CLINICAL APPLICATIONS 04/2012; 6(3-4):201-11. DOI:10.1002/prca.201100068 · 2.68 Impact Factor
  • Source
    • "Quantification of proteins in the LCM extracts was based on the comparison of paired peptides within each of the three independent FTLD-U/Control comparisons as previously described (Gozal et al., 2009). Ion current intensities for identified peptides were extracted in MS survey scans, and a ratio of the peak intensities for the peptide precursor ion was calculated. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal lobar degeneration (FTLD) is the most common cause of dementia with pre-senile onset, accounting for as many as 20% of cases. A common subset of FTLD cases is characterized by the presence of ubiquitinated inclusions in vulnerable neurons (FTLD-U). While the pathophysiological mechanisms underlying neurodegeneration in FTLD-U have not yet been elucidated, the presence of inclusions in this disease indicates enhanced aggregation of one or several proteins. Moreover, these inclusions suggest altered expression, processing, or degradation of proteins during FTLD-U pathogenesis. Thus, one approach to understanding disease mechanisms is to delineate the molecular changes in protein composition in FTLD-U brain. Using a combined approach consisting of laser capture microdissection (LCM) and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 1252 proteins in hippocampal dentate granule cells excised from three post-mortem FTLD-U and three unaffected control cases processed in parallel. Additionally, we employed a labeling-free quantification technique to compare the abundance of the identified proteins between FTLD-U and control cases. Quantification revealed 54 proteins with selective enrichment in FTLD-U, including TAR-DNA binding protein 43 (TDP-43), a recently identified component of ubiquitinated inclusions. Moreover, 19 proteins were selectively decreased in FTLD-U. Subsequent immunohistochemical analysis of TDP-43 and three additional protein candidates suggests that our proteomic profiling of FTLD-U dentate granule cells reveals both inclusion-associated proteins and non-aggregated disease-specific proteins. Application of LCM is a valuable tool in the molecular analysis of complex tissues, and its application in the proteomic characterization of neurodegenerative disorders such as FTLD-U may be used to identify proteins altered in disease.
    Frontiers in Neurology 04/2011; 2:24. DOI:10.3389/fneur.2011.00024
Show more