Automatic analysis of medial temporal lobe atrophy from structural MRIs for the early assessment of Alzheimer disease.

Dipartimento di Fisica, Università di Genova, 1-16146, Genova, Italy.
Medical Physics (Impact Factor: 3.01). 08/2009; 36(8):3737-47. DOI: 10.1118/1.3171686
Source: PubMed

ABSTRACT The purpose of this study is to develop a software for the extraction of the hippocampus and surrounding medial temporal lobe (MTL) regions from T1-weighted magnetic resonance (MR) images with no interactive input from the user, to introduce a novel statistical indicator, computed on the intensities in the automatically extracted MTL regions, which measures atrophy, and to evaluate the accuracy of the newly developed intensity-based measure of MTL atrophy to (a) distinguish between patients with Alzheimer disease (AD), patients with amnestic mild cognitive impairment (aMCI), and elderly controls by using established criteria for patients with AD and aMCI as the reference standard and (b) infer about the clinical outcome of aMCI patients. For the development of the software, the study included 61 patients with mild AD (17 men, 44 women; mean age +/- standard deviation (SD), 75.8 years +/- 7.8; Mini Mental State Examination (MMSE) score, 24.1 +/- 3.1), 42 patients with aMCI (11 men, 31 women; mean age +/- SD, 75.2 years +/- 4.9; MMSE score, 27.9 +/- 1.9), and 30 elderly healthy controls (10 men, 20 women; mean age +/- SD, 74.7 years +/- 5.2; MMSE score, 29.1 +/- 0.8). For the evaluation of the statistical indicator, 150 patients with mild AD (62 men, 88 women; mean age +/- SD, 76.3 years +/- 5.8; MMSE score, 23.2 +/- 4.1), 247 patients with aMCI (143 men, 104 women; mean age +/- SD, 75.3 years +/- 6.7; MMSE score, 27.0 +/- 1.8), and 135 elderly healthy controls (61 men, 74 women; mean age +/- SD, 76.4 years +/- 6.1). Fifty aMCI patients were evaluated every 6 months over a 3 year period to assess conversion to AD. For each participant, two subimages of the MTL regions were automatically extracted from T1-weighted MR images with high spatial resolution. An intensity-based MTL atrophy measure was found to separate control, MCI, and AD cohorts. Group differences were assessed by using two-sample t test. Individual classification was analyzed by using receiver operating characteristic (ROC) curves. Compared to controls, significant differences in the intensity-based MTL atrophy measure were detected in both groups of patients (AD vs controls, 0.28 +/- 0.03 vs 0.34 +/- 0.03, P < 0.001; aMCI vs controls, 0.31 +/- 0.03 vs 0.34 +/- 0.03, P < 0.001). Moreover, the subgroup of aMCI converters was significantly different from controls (0.27 +/- 0.034 vs 0.34 +/- 0.03, P < 0.001). Regarding the ROC curve for intergroup discrimination, the area under the curve was 0.863 for AD patients vs controls, 0.746 for all aMCI patients vs controls, and 0.880 for aMCI converters vs controls. With specificity set at 85%, the sensitivity was 74% for AD vs controls, 45% for aMCI vs controls, and 83% for aMCI converters vs controls. The automated analysis of MTL atrophy in the segmented volume is applied to the early assessment of AD, leading to the discrimination of aMCI converters with an average 3 year follow-up. This procedure can provide additional useful information in the early diagnosis of AD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Machine learning algorithms and multivariate data analysis methods have been widely utilized in the field of Alzheimer's disease (AD) research in recent years. Advances in medical imaging and medical image analysis have provided a means to generate and extract valuable neuroimaging information. Automatic classification techniques provide tools to analyze this information and observe inherent disease-related patterns in the data. In particular, these classifiers have been used to discriminate AD patients from healthy control subjects and to predict conversion from mild cognitive impairment to AD. In this paper, recent studies are reviewed that have used machine learning and multivariate analysis in the field of AD research. The main focus is on studies that used structural magnetic resonance imaging (MRI), but studies that included positron emission tomography and cerebrospinal fluid biomarkers in addition to MRI are also considered. A wide variety of materials and methods has been employed in different studies, resulting in a range of different outcomes. Influential factors such as classifiers, feature extraction algorithms, feature selection methods, validation approaches, and cohort properties are reviewed, as well as key MRI-based and multi-modal based studies. Current and future trends are discussed.
    Journal of Alzheimer's disease: JAD 04/2014; · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Theimpact of neuroimaging on the study and understanding of dementing illnesses has been enormous. Here we review the main MR structural technical developments applied to Alzheimer’s disease and fronto-temporal dementia, two forms of neurodegenerative disorders that have a number of similarities but also several differences. The possibility of detecting increasingly subtle brain changes, together with the need of handling larger and larger data sets, keeping up with the ever expanding aging population, are perhaps the main driving forces behind recent MR technique developments in the field of dementia. The measurement of atrophy is now integrated by more advanced approaches, investigating the alterations of the architecture of brain tissues beyond pure volumetric loss. Brain connectivity is now studied in vivo with techniques such as diffusion tensor imaging and tractography. Also, automated methods of subject classification open up new possibilities of rapid and cost-effective diagnosis. The inter-disciplinary efforts are changing the clinical scenario of dementia care from one of helpless defeat to one of promising innovation.
    European Physical Journal Plus 11/2012; 127(11). · 1.48 Impact Factor
  • Source
    MICCAI 2014; 09/2014

Full-text (2 Sources)

Available from
May 19, 2014