HOPS interacts with Apl5 at the vacuole membrane and is required for consumption of AP-3 transport vesicles.

Department of Biochemistry, University of Washington, Seattle, WA 98195-3750, USA.
Molecular biology of the cell (Impact Factor: 5.98). 10/2009; 20(21):4563-74. DOI: 10.1091/mbc.E09-04-0272
Source: PubMed

ABSTRACT Adaptor protein complexes (APs) are evolutionarily conserved heterotetramers that couple cargo selection to the formation of highly curved membranes during vesicle budding. In Saccharomyces cerevisiae, AP-3 mediates vesicle traffic from the late Golgi to the vacuolar lysosome. The HOPS subunit Vps41 is one of the few proteins reported to have a specific role in AP-3 traffic, yet its function remains undefined. We now show that although the AP-3 delta subunit, Apl5, binds Vps41 directly, this interaction occurs preferentially within the context of the HOPS docking complex. Fluorescence microscopy indicates that Vps41 and other HOPS subunits do not detectably colocalize with AP-3 at the late Golgi or on post-Golgi (Sec7-negative) vesicles. Vps41 and HOPS do, however, transiently colocalize with AP-3 vesicles when these vesicles dock at the vacuole membrane. In cells with mutations in HOPS subunits or the vacuole SNARE Vam3, AP-3 shifts from the cytosol to a membrane fraction. Fluorescence microscopy suggests that this fraction consists of post-Golgi AP-3 vesicles that have failed to dock or fuse at the vacuole membrane. We propose that AP-3 remains associated with budded vesicles, interacts with Vps41 and HOPS upon vesicle docking at the vacuole, and finally dissociates during docking or fusion.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane trafficking depends on transport vesicles and carriers docking and fusing with the target organelle for the delivery of cargo. Membrane tethers and small guanosine triphosphatases (GTPases) mediate the docking of transport vesicles/carriers to enhance the efficiency of the subsequent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated fusion event with the target membrane bilayer. Different classes of membrane tethers and their specific intracellular location throughout the endomembrane system are now well defined. Recent biochemical and structural studies have led to a deeper understanding of the mechanism by which membrane tethers mediate docking of membrane carriers as well as an appreciation of the role of tethers in coordinating the correct SNARE complex and in regulating the organization of membrane compartments. This review will summarize the properties and roles of membrane tethers of both secretory and endocytic systems.
    F1000prime reports. 09/2014; 6:74.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular life depends on continuous transport of lipids and small molecules between mitochondria and the endomembrane system. Recently, endoplasmic reticulum-mitochondrial encounter structure (ERMES) was identified as an important yet nonessential contact for such transport. Using a high-content screen in yeast, we found a contact site, marked by Vam6/Vps39, between vacuoles (the yeast lysosomal compartment) and mitochondria, named vCLAMP (vacuole and mitochondria patch). vCLAMP is enriched with ion and amino-acid transporters and has a role in lipid relay between the endomembrane system and mitochondria. Critically, we show that mitochondria are dependent on having one of two contact sites, ERMES or vCLAMP. The absence of one causes expansion of the other, and elimination of both is lethal. Identification of vCLAMP adds to our ability to understand the complexity of interorganellar crosstalk.
    Developmental cell. 07/2014; 30(1):95-102.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endosomal and vacuole fusion depends on the two homologous tethering complexes CORVET and HOPS. HOPS binds the activated Rab GTPase Ypt7 via two distinct subunits, Vps39 and Vps41. To understand the participation and possible polarity of Vps41 and Vps39 during tethering, we used an in vivo approach. For this, we established the ligand-induced relocalization to the plasma membrane, using the Mon1-Ccz1 GEF complex that activates Ypt7 on endosomes. We then employed slight overexpression to compare the mobility of the HOPS-specific Vps41 and Vps39 subunits during this process. Our data indicate an asymmetry in the Rab-specific interaction of the two HOPS subunits: Vps39 is more tightly bound to the vacuole, and relocalizes the entire vacuole to the plasma membrane, whereas Vps41 behaved like the more mobile subunit. This is due to their specific Rab binding, as the mobility of both subunits was similar in ypt7∆ cells. In contrast, both HOPS subunits were far less mobile if tagged endogenously, suggesting that the entire HOPS complex is tightly bound to the vacuole in vivo. Similar results were obtained for the endosomal association of CORVET, when we followed its Rab-specific subunit Vps8. Our data provide in vivo evidence for distinct Rab specificity within HOPS, which may explain its function during tethering, and indicate that these tethering complexes are less mobile within the cell than previously anticipated.
    Cellular logistics. 04/2014; 4:e29191.


Available from