Article

Multicenter evaluation of Bactec MGIT 960 system for second-line drug susceptibility testing of Mycobacterium tuberculosis complex.

Microbial Diseases Laboratory, CDPH, 850 Marina Bay Parkway, Richmond, CA 94804, USA.
Journal of clinical microbiology (Impact Factor: 4.16). 10/2009; 47(11):3630-4. DOI: 10.1128/JCM.00803-09
Source: PubMed

ABSTRACT The Bactec MGIT 960 system for testing susceptibility to second-line drugs was evaluated with 117 clinical strains in a multicenter study. The four drugs studied were levofloxacin, amikacin, capreomycin, and ethionamide. The critical concentration established for levofloxacin and amikacin was 1.5 microg/ml, that established for capreomycin was 3.0 microg/ml, and that established for ethionamide was 5.0 microg/ml. The overall level of agreement between the agar proportion method and the MGIT 960 system was 96.4%, and the levels of agreement for the individuals drugs were 99.1% for levofloxacin, 100% for amikacin, 97.4% for capreomycin, and 88.9% for ethionamide. The rate of reproducibility of the drug susceptibility testing results between the participating laboratories was 99.5%.

0 Bookmarks
 · 
66 Views
  • Journal of global infectious diseases 01/2014; 6(1):44-5.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug-resistant forms of tuberculosis (TB), particularly multi- and extensively drug-resistant TB, represent an important obstacle to global control of the disease. Recently, new drugs, repurposed drugs, and new drug combinations have been evaluated, with a number showing promise for the treatment of drug-resistant TB. Additionally, a range of methods for accelerating mycobacterial culture, identification, and drug susceptibility testing have been developed, and several in-house and commercial genotyping methods for speeding drug resistance detection have become available. Despite these significant achievements in drug development and diagnostics, drug-resistant TB continues to be difficult to diagnose and treat. Significant international efforts are still needed, especially in the field of clinical and operational research, to translate these encouraging developments into effective patient cure and make them readily available to resource-constrained settings, where they are most needed.
    Clinical Medicine Insights: Therapeutics 06/2013; 20135:117-135.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Treating extensively drug-resistant (XDR) tuberculosis (TB) is a serious challenge. Culture-based drug susceptibility testing (DST) may take 4 weeks or longer from specimen collection to the availability of results. We developed a pyrosequencing (PSQ) assay including eight subassays for the rapid identification of Mycobacterium tuberculosis complex (MTBC) and concurrent detection of mutations associated with resistance to drugs defining XDR TB. The entire procedure, from DNA extraction to the availability of results, was accomplished within 6 h. The assay was validated for testing clinical isolates and clinical specimens, which improves the turnaround time for molecular DST and maximizes the benefit of using molecular testing. A total of 130 clinical isolates and 129 clinical specimens were studied. The correlations between the PSQ results and the phenotypic DST results were 94.3% for isoniazid, 98.7% for rifampin, 97.6% for quinolones (ofloxacin, levofloxacin, or moxifloxacin), 99.2% for amikacin, 99.2% for capreomycin, and 96.4% for kanamycin. For testing clinical specimens, the PSQ assay yielded a 98.4% sensitivity for detecting MTBC and a 95.8% sensitivity for generating complete sequencing results from all subassays. The PSQ assay was able to rapidly and accurately detect drug resistance mutations with the sequence information provided, which allows further study of the association of drug resistance or susceptibility with each mutation and the accumulation of such knowledge for future interpretation of results. Thus, reporting of false resistance for mutations known not to confer resistance can be prevented, which is a significant benefit of the assay over existing molecular diagnostic methods endorsed by the World Health Organization.
    Journal of clinical microbiology 02/2014; 52(2):475-82. · 4.16 Impact Factor

Full-text

View
12 Downloads
Available from
Jun 3, 2014