Laboratory and non-laboratory-based risk prediction models for secondary prevention of cardiovascular disease: The LIPID study

Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
European journal of cardiovascular prevention and rehabilitation: official journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology (Impact Factor: 3.69). 10/2009; 16(6):660-8. DOI: 10.1097/HJR.0b013e32832f3b2b
Source: PubMed


The aims of this study were to examine whether risk prediction models for recurrent cardiovascular disease (CVD) events have prognostic value, and to particularly examine the performance of those models based on non-laboratory data. We also aimed to construct a risk chart based on the risk factors that showed the strongest relationship with CVD.
Cox proportional hazards models were used to calculate a risk score for each recurrent event in a CVD patient who was enrolled in a very large randomized controlled clinical trial. Patients were then classified into groups according to quintiles of their risk score. These risk models were validated by calibration and discrimination analyses based on data from patients recruited in New Zealand for the same study. Non-laboratory-based risk factors, such as age, sex, body mass index, smoking status, angina grade, history of myocardial infarction, revascularization, stroke, diabetes or hypertension and treatment with pravastatin, were found to be significantly associated with the risk of developing a recurrent CVD event. Patients who were classified into the medium and high-risk groups had two-fold and four-fold the risk of developing a CVD event compared with those in the low-risk group, respectively. The risk prediction models also fitted New Zealand data well after recalibration.
A simpler non-laboratory-based risk prediction model performed equally as well as the more comprehensive laboratory-based risk prediction models. The risk chart based on the further simplified Score Model may provide a useful tool for clinical cardiologists to assess an individual patient's risk for recurrent CVD events.

1 Follower
11 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many risk prediction models have been developed for cardiovascular diseases in different countries during the past three decades. However, there has not been consistent agreement regarding how to appropriately assess a risk prediction model, especially when new markers are added to an established risk prediction model. Researchers often use the area under the receiver operating characteristic curve (ROC) to assess the discriminatory ability of a risk prediction model. However, recent studies suggest that this method has serious limitations and cannot be the sole approach to evaluate the usefulness of a new marker in clinical and epidemiological studies. To overcome the shortcomings of this traditional method, new assessment methods have been proposed. The aim of this article is to overview various risk prediction models for cardiovascular diseases, to describe the receiver operating characteristic curve method and discuss some new assessment methods proposed recently. Some of the methods were illustrated with figures from a cardiovascular disease study in Australia.
    Annals of epidemiology 08/2009; 19(10):711-7. DOI:10.1016/j.annepidem.2009.05.005 · 2.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Cardiovascular disease (CVD) risk-prediction algorithms are key in determining one's eligibility for prevention strategies, but are often population-specific. Metabolic syndrome (MetS), a clustering of risk factors that increase the risk of CVD, does not currently have a risk-prediction algorithm available for prediction of CVD. The aim of this study was to compare the predictive capacities of an algorithm intended for 'healthy' individuals and one intended for 'diabetic' individuals.Methods: Individual-specific data from 2700 subjects defined as MetS but free of diagnosed CVD from the Australian Diabetes, Obesity and Lifestyle study was used to estimate 5-year risk of CVD using the two algorithms, and compared using Wilcoxon-signed rank test. CVD end point data was used to assess the performance using discrimination and calibration techniques of the two algorithms.Results: Five-year risk-prediction comparisons demonstrated that the UKPDS algorithm overpredicted risk in the younger age groups (25-54 years) and underpredicted risk in the older age groups (≥55 years) compared to the Framingham algorithm. A total of 133 CVD events occurred over a median follow up of 5.0 years. Model performance analyses demonstrated both the Framingham and UKPDS algorithms were poor at discrimination (area under receiver operator curve 0.513 and 0.524, respectively) and calibration (Hosmer-Lemeshow 467.1 and 297.0, respectively).Conclusions: Neither the Framingham or UKPDS algorithms are ideal for prediction of CVD risk in a MetS population. This study highlights the need for development of population-specific risk-prediction algorithms for this growing population group.
    05/2012; 21(3). DOI:10.1177/2047487312449307
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disease remains the primary cause of mortality and morbidity in the developed world. Risk scores can provide clinical risk stratification and many exist for use in cardiovascular disease prevention and treatment. Cardiovascular risk scores predict mortality, coronary heart disease and other vascular disease using risk predictors such as patient age, sex, BMI, smoking history, cholesterol level, blood pressure, glucose level or diabetes diagnosis, family history of cardiovascular disease and creatinine. While the risk scores in existence are excellent for risk stratification, actual use in a clinical environment is lagging behind the rate of new risk score creation. Future research should focus on how to utilize risk scores most effectively and efficiently in clinical practice.
    Future Cardiology 09/2012; 8(5):765-78. DOI:10.2217/fca.12.49
Show more