Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM

Université Clermont 1, Pathogénie Bactérienne Intestinale, JE2526, Unité Sous Contrat Institut National de la Recherche Agronomique 2018, Clermont-Ferrand F-63001, France.
Journal of Experimental Medicine (Impact Factor: 13.91). 10/2009; 206(10):2179-89. DOI: 10.1084/jem.20090741
Source: PubMed

ABSTRACT Abnormal expression of CEACAM6 is observed at the apical surface of the ileal epithelium in Crohn's disease (CD) patients, and CD ileal lesions are colonized by pathogenic adherent-invasive Escherichia coli (AIEC). We investigated the ability of AIEC reference strain LF82 to colonize the intestinal mucosa and to induce inflammation in CEABAC10 transgenic mice expressing human CEACAMs. AIEC LF82 virulent bacteria, but not nonpathogenic E. coli K-12, were able to persist in the gut of CEABAC10 transgenic mice and to induce severe colitis with reduced survival rate, marked weight loss, increased rectal bleeding, presence of erosive lesions, mucosal inflammation, and increased proinflammatory cytokine expression. The colitis depended on type 1 pili expression by AIEC bacteria and on intestinal CEACAM expression because no sign of colitis was observed in transgenic mice infected with type 1 pili-negative LF82-Delta fimH isogenic mutant or in wild-type mice infected with AIEC LF82 bacteria. These findings strongly support the hypothesis that in CD patients having an abnormal intestinal expression of CEACAM6, AIEC bacteria via type 1 pili expression can colonize the intestinal mucosa and induce gut inflammation. Thus, targeting AIEC adhesion to gut mucosa represents a new strategy for clinicians to prevent and/or to treat ileal CD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A trillion of microorganisms colonize the mammalian intestine. Most of them have coevolved with the host in a symbiotic relationship and some of them have developed strategies to promote their replication in the presence of competing microbiota. Recent evidence suggests that perturbation of the microbial community favors the emergence of opportunistic pathogens, in particular adherent-invasive Escherichia coli (AIEC) that can increase incidence and severity of gut inflammation in the context of Crohn's disease (CD). This review will report the importance of AIEC as triggers of intestinal inflammation, focusing on their impact on epithelial barrier function and stimulation of mucosal inflammation. Beyond manipulation of immune response, restoration of gut microbiota as a new treatment option for CD patients will be discussed.
    BioMed Research International 01/2014; 2014:567929. DOI:10.1155/2014/567929 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Important advances during the last decade have been made in understanding the complex etiopathogenesis of Crohn's disease (CD). While many gaps in our knowledge still exist, it has been suggested that the etiology of CD is multifactorial including genetic, environmental and infectious factors. The most widely accepted theory states that CD is caused by an aggressive immune response to infectious agents in genetically predisposed individuals. The rise of genome-wide association studies allowed the identification of loci and genetic variants in several components of host innate and adaptive immune responses to microorganisms in the gut, highlighting an implication of intestinal microbiota in CD etiology. Moreover, numerous independent studies reported a dysbiosis, i.e., a modification of intestinal microbiota composition, with an imbalance between the abundance of beneficial and harmful bacteria. Although microorganisms including viruses, yeasts, fungi and bacteria have been postulated as potential CD pathogens, based on epidemiological, clinicopathological, genetic and experimental evidence, their precise role in this disease is not clearly defined. This review summarizes the current knowledge of the infectious agents associated with an increased risk of developing CD. Therapeutic approaches to modulate the intestinal dysbiosis and to target the putative CD-associated pathogens, as well as their potential mechanisms of action are also discussed.
    World Journal of Gastroenterology 09/2014; 20(34):12102-12117. DOI:10.3748/wjg.v20.i34.12102 · 2.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal microbiota (previously referred to as "intestinal flora") has entered the focus of research interest not only in microbiology but also in medicine. Huge progress has been made with respect to the analysis of composition and functions of the human microbiota. An "imbalance" of the microbiota, frequently also called a "dysbiosis," has been associated with different diseases in recent years. Crohn's disease and ulcerative colitis as two major forms of inflammatory bowel disease, irritable bowel syndrome (IBS) and some infectious intestinal diseases such as Clostridium difficile colitis feature a dysbiosis of the intestinal flora. Whereas this is somehow expected or less surprising, an imbalance of the microbiota or an enrichment of specific bacterial strains in the flora has been associated with an increasing number of other diseases such as diabetes, metabolic syndrome, non-alcoholic fatty liver disease or steatohepatitis and even psychiatric disorders such as depression or multiple sclerosis. It is important to understand the different aspects of potential contributions of the microbiota to pathophysiology of the mentioned diseases. Conclusion: With the present manuscript, we aim to summarize the current knowledge and provide an overview of the different concepts on how bacteria contribute to health and disease in animal models and-more importantly-humans. In addition, it has to be borne in mind that we are only at the very beginning to understand the complex mechanisms of host-microbial interactions.
    European Journal of Pediatrics 01/2015; 174(2). DOI:10.1007/s00431-014-2476-2 · 1.98 Impact Factor

Preview (2 Sources)

Available from