Article

Bed Bug (Heteroptera: Cimicidae) Attraction to Pitfall Traps Baited With Carbon Dioxide, Heat, and Chemical Lure

Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA.
Journal of Economic Entomology (Impact Factor: 1.61). 08/2009; 102(4):1580-5. DOI: 10.1603/029.102.0423
Source: PubMed

ABSTRACT Carbon dioxide (CO2), heat, and chemical lure (1-octen-3-ol and L-lactic acid) were tested as attractants for bed bugs, Cimex lectularius L. (Heteroptera: Cimicidae), by using pitfall traps. Both CO2 and heat were attractive to bed bugs. CO2 was significantly more attractive to bed bugs than heat. Traps baited with chemical lure attracted more bed bugs but at a statistically nonsignificant level. In small arena studies (56 by 44 cm), pitfall traps baited with CO2 or heat trapped 79.8 +/- 6.7 and 51.6 +/- 0.9% (mean +/- SEM) of the bed bugs after 6 h, respectively. Traps baited with CO2 + heat, CO, + chemical lure, or CO2 + heat + chemical lure captured > or = 86.7% of the bed bugs after 6 h, indicating baited pitfall traps were highly effective in attracting and capturing bed bugs from a short distance. In 3.1- by 1.8-m environmental chambers, a pitfall trap baited with CO, + heat + chemical lure trapped 57.3 +/- 6.4% of the bed bugs overnight. The pitfall trap was further tested in four bed bug-infested apartments to determine its efficacy in detecting light bed bug infestations. Visual inspections found an average of 12.0 +/- 5.4 bed bugs per apartment. The bed bugs that were found by visual inspections were hand-removed during inspections. A pitfall trap baited with CO2 and chemical lure was subsequently placed in each apartment with an average of 15.0 +/- 6.4 bed bugs collected per trap by the next morning. We conclude that baited pitfall traps are potentially effective tools for evaluating bed bug control programs and detecting early bed bug infestations.

1 Bookmark
 · 
1,746 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A large-arena bioassay is used to examine sex differences in spatiotemporal patterns of bed bug Cimex lectularius L. behavioural responses to either a human host or CO2 gas. After release in the centre of the arena, 90% of newly-fed bed bugs move to hiding places in the corners within 24 h. They require 3 days to settle down completely in the arena, with generally low activity levels and the absence of responses to human stimuli for 5 days. After 8–9 days, persistent responses can be recorded. Sex differences are observed, in which females are more active during establishment, respond faster after feeding, expose themselves more than males during the daytime, and respond more strongly to the host signal. The number of bed bugs that rest in harbourages is found to vary significantly according to light setting and sex. Both sexes stay inside harbourages more in daylight compared with night, and males hide more than females during the daytime but not during the night. The spatial distribution of the bed bugs is also found to change with the presence of CO2, and peak aggregation around the odour source is observed after 24 min. Both male and female bed bugs move from hiding places or the border of the arena toward the centre where CO2 is released. Peak responses are always highest during the night. Bed bug behaviour and behaviour-regulating features are discussed in the context of control methods.
    Physiological Entomology 05/2014; 39(3). DOI:10.1111/phen.12062 · 1.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Technologies to detect bed bugs have not kept pace with their global resurgence. Early detection is critical to prevent infestations from spreading. Detection based exclusively on bites is inadequate, because reactions to insect bites are non-specific and often misdiagnosed. Visual inspections are commonly used and depend on identifying live bugs, exuviae, or fecal droplets. Visual inspections are inexpensive, but they are time-consuming and unreliable when only a few bugs are present. Use of a dog to detect bed bugs is gaining in popularity, but it can be expensive, may unintentionally advertise a bed bug problem, and is not foolproof. Passive monitors mimic natural harborages; they are discreet and typically use an adhesive to trap bugs. Active monitors generate carbon dioxide, heat, a pheromone, or a combination to attract bed bugs to a trap. New technologies using DNA analysis, mass spectrometry, and electronic noses are innovative but impractical and expensive for widespread use.
    The American journal of tropical medicine and hygiene 04/2013; 88(4):619-25. DOI:10.4269/ajtmh.12-0493 · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs' antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers.
    PLoS ONE 11/2014; 9(11):e113692. DOI:10.1371/journal.pone.0113692 · 3.53 Impact Factor

Preview

Download
28 Downloads