Similarity in genetic alterations between paired well-differentiated and dedifferentiated components of dedifferentiated liposarcoma

Department of Pathology, University of California, San Francisco, CA 94115-1656, USA.
Modern Pathology (Impact Factor: 6.19). 10/2009; 22(11):1477-88. DOI: 10.1038/modpathol.2009.119
Source: PubMed


Liposarcoma represents a unique model insofar as some well-differentiated liposarcomas progress to non-lipogenic, so-called 'dedifferentiated,' forms. The well-differentiated and dedifferentiated family of liposarcomas demonstrates amplification of the chromosome subregion 12q13-q15 with resultant amplification of the MDM2 and CDK4 genes. However, the specific genetic changes that distinguish between well-differentiated and dedifferentiated liposarcomas are less well understood. To study the genetic changes in dedifferentiated liposarcomas, paired well-differentiated and dedifferentiated components of 29 tumors were analyzed separately by array-based comparative genomic hybridization. A bacterial artificial chromosome array at approximately 1-Mb resolution was used. The genetic changes were compared with clinical presentation, grade of the dedifferentiated component and overexpression of MDM2 and CDK4. Most tumors (n=21, 72%) were retroperitoneal, with both components present at initial diagnosis (n=25, 86%). Eight tumors (28%) were classified as low-grade dedifferentiation. In four cases (14%), a well-differentiated liposarcoma preceded the presentation of the dedifferentiated tumor by 1-5 years. 12q13-q15 was amplified in all tumors. Using unsupervised hierarchical clustering of copy-number changes, all but two tumors showed close similarities between well-differentiated and dedifferentiated components, and segregated as pairs. Dedifferentiated components had more total amplifications (P=0.008) and a trend for gain at 19q13.2, but no genetic changes were significant in distinguishing between the two components. High-level amplifications of 1p21-32 (n=7, 24%), 1q21-23 (n=9, 31%), 6q23-24 (n=6, 21%) and 12q24 (n=3, 10%) were common, but none significantly correlated with differentiation. Presentation and grade correlated with the frequency of changes at a number of genetic loci (P<0.001), whereas CDK4 immunostaining showed negative correlation with 12q13.13 amplification. The genotypic similarity, at the limit of the array's resolution, between components implies that most genetic changes precede phenotypic 'progression,' early in tumorigenesis. The relationship between genetic changes and presentation or grade may reflect differences in factors that control genomic instability or the background genotype of the tumor.

9 Reads
  • Source
    • "Following early work showing MDM2 amplification in LPS and some MFH [14] [15], MDM2 amplification has been shown to be characteristic of WDL/DDL [16–18, 22– 24] with similar genetic alterations demonstrated between paired well-differentiated and dedifferentiated components [25] (Figure 1(f)). While some earlier studies claimed 100% sensitivity and specificity in distinguishing lipomas from WDL (although also showing that up to 40% of high grade sarcomas harbored MDM2 amplification) [21], others did not find MDM2 amplification in all ALT/WDL [16] [26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. The assessment of MDM2 gene amplification by fluorescence in situ hybridization (FISH) has become a routine ancillary tool for diagnosing atypical lipomatous tumor (ALT)/well-differentiated liposarcoma and dedifferentiated liposarcoma (WDL/DDL) in specialist sarcoma units. We describe our experience of its utility at our tertiary institute. Methods. All routine histology samples in which MDM2 amplification was assessed with FISH over a 2-year period were included, and FISH results were correlated with clinical and histologic findings. Results. 365 samples from 347 patients had FISH for MDM2 gene amplification. 170 were positive (i.e., showed MDM2 gene amplification), 192 were negative, and 3 were technically unsatisfactory. There were 122 histologically benign cases showing a histology:FISH concordance rate of 92.6%, 142 WDL/DDL (concordance 96.5%), and 34 cases histologically equivocal for WDL (concordance 50%). Of 64 spindle cell/pleomorphic neoplasms (in which DDL was a differential diagnosis), 21.9% showed MDM2 amplification. Of the cases with discrepant histology and FISH, all but 3 had diagnoses amended following FISH results. For discrepancies of benign histology but positive FISH, lesions were on average larger, more frequently in "classical" (intra-abdominal or inguinal) sites for WDL/DDL and more frequently core biopsies. Discrepancies of malignant histology but negative FISH were smaller, less frequently in "classical" sites but again more frequently core biopsies. Conclusions. FISH has a high correlation rate with histology for cases with firm histologic diagnoses of lipoma or WDL/DDL. It is a useful ancillary diagnostic tool in histologically equivocal cases, particularly in WDL lacking significant histologic atypia or DDL without corresponding WDL component, especially in larger tumors, those from intra-abdominal or inguinal sites or core biopsies. There is a significant group of well-differentiated adipocytic neoplasms which are difficult to diagnose on morphology alone, in which FISH for MDM2 amplification is diagnostically contributory.
    Sarcoma 03/2015; 2015:812089. DOI:10.1155/2015/812089
  • Source
    • "According to the World Health Organization (WHO) classification, liposarcomas are further classified into four morphological subtypes: well-differentiated liposarcoma, de-differentiated liposarcoma, pleomorphic liposarcoma, and myxoid/round-cell liposarcoma (MRC), which enables characterization of the individual liposarcoma subtypes [7]. MDM2 amplification at chromosome 12q13-q15, which is present in all tumor samples, is a key driver of dedifferentiated liposarcoma [8,9]. Pleomorphic liposarcoma tumor samples harbor gains and deletions in multiple chromosomal regions with the most common being deletion (60%) at chromosome 13q14.2-q14.3 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Soft tissue sarcomas (STS) are heterogeneous mesenchymal tumors with diverse subtypes. STS can be classified into two main categories according to the type of genomic alteration: recurrent translocation driven STS, and non-recurrent translocations. However, little has known about acquired uniparental disomy in STS. Methods In this study, we analyzed SNP microarray data to determine the frequency and distribution patterns of acquired uniparental disomy (aUPD) in major soft tissue sarcoma (STS) subtypes using CNAG and R softwares. Results We identified recurrent aUPD regions specific to alveolar rhabdomyosarcoma with the most frequent at 11p15.4, gastrointestinal stromal tumor at 1p36.11-p35.3, leiomyosarcoma at 17p13.3-p13.1, myxofibrosarcoma at 1p35.1-p34.2 and 16q23.3-q24.1, and pleomorphic liposarcoma at 13q13.2-q13.3 and 13q14.11-q14.2. In contrast, specific recurrent aUPD regions were not identified in dedifferentiated liposarcoma, Ewing sarcoma, myxoid/round cell liposarcoma, and synovial sarcoma. Strikingly total, centromeric and segmental aUPD regions are more frequent in STS that do not exhibit recurrent translocation events. Conclusions Our study yields a detailed map of aUPD across 9 diverse STS subtypes and suggests the potential location of several novel tumor suppressor genes and oncogenes.
    BMC Medical Genomics 12/2012; 5(1):60. DOI:10.1186/1755-8794-5-60 · 2.87 Impact Factor
  • Source
    • "A search in the literature shows that this finding is not unusual. Among others, examples are dedifferentiated liposarcomas and biphasic carcinosarcomas [62] [63]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept of dedifferentiation had previously been used in salivary gland carcinomas. Recently, the term "high-grade transformation" was introduced for adenoid cystic carcinoma, acinic cell carcinoma, epithelial-myoepithelial carcinoma, and polymorphous low-grade adenocarcinoma and may better reflect this phenomenon, although transformation into moderately differentiated adenocarcinoma (i.e., not "high grade") has also been described. Among the immunohistochemical markers, Ki-67 seems to be the only one that can help distinguish between the conventional and transformed components; however, the combination of morphological criteria is still sovereign. The overexpression of p53 was observed in the transformed component in all tumor types studied, despite few cases having been demonstrated to carry mutations or deletions in TP53 gene. Genetic studies in salivary gland tumors with dedifferentiation/high-grade transformation are rare and deserve further investigation. This paper aims at providing an overview on the recent concepts in histopathological classification of salivary gland tumors, complemented by immunohistochemical and genetic findings.
    Pathology Research International 08/2011; 2011(2):325965. DOI:10.4061/2011/325965
Show more