Article

Permanent and transient effects of locally delivered n-acetyl cysteine in a guinea pig model of cochlear implantation.

The University of Melbourne, Australia.
Hearing research (Impact Factor: 2.85). 10/2009; 259(1-2):24-30. DOI: 10.1016/j.heares.2009.08.010
Source: PubMed

ABSTRACT Protection of residual hearing after cochlear implant surgery can improve the speech and music perception of cochlear implant recipients, particularly in the presence of background noise. Surgical trauma and chronic inflammation are thought to be responsible for a significant proportion of residual hearing loss after surgery. Local delivery of the anti-oxidant precursor n-acetyl cysteine (NAC) to the cochlea via round window 30min prior to surgery, increased the level of residual hearing at 24-32kHz 4weeks post surgery compared to controls. The hearing protection was found in the basal turn near the site of implantation. Coincidentally, the basal turn was also the location that sustained the greatest hearing loss. As well as protecting residual hearing, NAC-treated animals demonstrated a reduction in the chronic inflammatory changes associated with implantation. While these findings indicate that anti-oxidant therapy can be used to reduce the hearing loss associated with surgical trauma, the local delivery of NAC was associated with a transient increase in hearing thresholds, and osseoneogenesis was seen in a greater number of NAC-treated animals. These side-effects would limit its clinical use through local cochlear administration. However, it is not known yet whether these effects would also be produced by other anti-oxidants, or ameliorated by using a different route of administration.

0 Bookmarks
 · 
63 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cochlear implants have provided hearing to hundreds of thousands of profoundly deaf people around the world. Recently, the eligibility criteria for cochlear implantation have been relaxed to include individuals who have some useful residual hearing. These recipients receive inputs from both electric and acoustic stimulation (EAS). Implant recipients who can combine these hearing modalities demonstrate pronounced benefit in speech perception, listening in background noise, and music appreciation over implant recipients that rely on electrical stimulation alone. The mechanisms bestowing this benefit are unknown, but it is likely that interaction of the electric and acoustic signals in the auditory pathway plays a role. Protection of residual hearing both during and following cochlear implantation is critical for EAS. A number of surgical refinements have been implemented to protect residual hearing, and the development of hearing-protective drug and gene therapies is promising for EAS recipients.This review outlines the current field of EAS, with a focus on interactions that are observed between these modalities in animal models. It also outlines current trends in EAS surgery and gives an overview of the drug and gene therapies that are clinically translatable and may one day provide protection of residual hearing for cochlear implant recipients.
    BioMed Research International 01/2014; 2014(Article ID 350504):17 pages. · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The safety and efficacy of Ciprodex(R) has been demonstrated for treatment of chronic suppurative otitis media (CSOM). However, symptoms fail to resolve in 9-15% of patients. The objective of this study is to evaluate the efficacy of N-acetylcysteine (NAC) on S. aureus, and planktonic and sessile (biofilm forming) P. aeruginosa in vitro using clinical isolates from patients with CSOM.
    07/2014; 43(1):20.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effect of timing of dexamethasone administration on auditory hair cell survival following an ototoxic insult with kanamycin and furosemide.Study design: Controlled experimental study.Setting: Translational Science Experimental Laboratory. 5-6 week old CBA/CaJ mice, divided into 6 groups, were injected with kanamycin (1 mg/g SC) followed by furosemide (0.5 mg/g IP). Dexamethasone (0.1 mg/g IP) was injected at either 1 hour prior to insult, +1 hr, +6 hr, +12 hr, or +72 hr post insult. Temporal bones harvested on day 7 underwent Organ of Corti dissection. Immunohistochemical staining was performed using antibodies to myosin 7a, phalloidin, and TO-PRO. Hair cell counts demonstrate a uniform ototoxicity model with total loss of outer hair cells (OHCs) and near-total loss of inner hair cells (IHCs). The group pre-treated with dexamethasone showed a statistically significant improvement in counts compared to controls (p = 0.004). Counts from the other experimental groups given dexamethasone after the insult were highly variable but demonstrated some apical and middle turn inner hair cell survival. Treatment of systemic dexamethasone prior to ototoxic insult attenuates hair cell loss in a reliable, novel, ototoxicity model using kanamycin and furosemide in CBA/CaJ mice. Dosing with dexamethasone following ototoxic insult shows promising yet variable response in hair cell survival.
    Journal of otolaryngology - head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale 04/2014; 43(1):12. · 0.71 Impact Factor