Impact of surface tension in pharmaceutical sciences.

Department of Pharmacy, National University of Singapore.
Journal of Pharmacy and Pharmaceutical Sciences (Impact Factor: 1.68). 02/2009; 12(2):218-28.
Source: PubMed

ABSTRACT Surface chemistry has a large influence in many industries. In the life sciences, surface area is gaining importance in the characterization of materials during their development, formulation and manufacturing. The chemical activity, adsorption, dissolution, and bioavailability of a drug may depend on the surface of the molecule. In order to meet manufacturing challenges and develop new and better performing products with improved qualities, knowledge of surface tension is of utmost importance. An attempt has been made in this paper to review the application of interfacial tension in the key domains of pharmaceutical applications.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cactus is a plant that naturally grows in tropical and semi-tropical regions of the world. The composition of this muci-lage is believed to differ from species to species. Hence, comparative study was carried out on mucilages of Opuntia ficus-indica (OFI) and Opuntia stricta (OS) as regard to their physico-chemical properties and acute toxicity levels. The study indicated that solubility of the dry mucilages were comparable and increased as raise in temperature. However, at all temperature levels the swelling powers were significantly higher in mucilage of OS than that of OFI. At 100% RH the moisture sorption property of OFI (95.4%) was higher than that of OS (76.9%). The pH values of both mucilages at 12% dispersions were found to be 5.57 and 5.87 for OFI and OS, respectively. The conductivity at the same concentra-tion, 12% (w/v), of OFI was 13.12 mS/cm while that of OS was 9.31 mS/cm. The apparent viscosities at 12% (w/v) were 9017 mPas and 10,060 mPas for OFI and OS, respectively. The apparent viscosities of the dispersions decreased with increase in shear rates which rendered the dispersions a pseudoplastic flow. The surface tension of the aqueous dispersions of OFI (28.71 mN/M) decreased significantly as compared to that of OS (39.7 mN/M). The results of the study proved that the mucilage of OS was superior to OFI mucilage for use as food and pharmaceutical excipients. Moreover, both mucilages exhibited low acute toxicity levels.
    Journal of Biomaterials and Nanobiotechnology 01/2012; 03(01). DOI:10.4236/jbnb.2012.31010
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study aimed to develop novel ITZ-loaded deformable liposomes (DL) in presence of hydroxypropyl-β-cyclodextrin (HPβCD) (DL-CD) to enhance antifungal activity. These formulations have been reported as conceivable vesicles to deliver drug molecules to the skin layers. The efficiency of the prepared systems was compared with conventional liposomes (CL) and ITZ solution. The developed liposomes were characterized for particle size, entrapment efficiency (EE %), deformability, stability, and morphology of the vesicles. In addition, ex vivo penetration and antifungal activity were evaluated. It was found that the presence of HPβCD played a significant role in reducing the vesicle size to nano range. The deformability study and TEM images revealed that membrane deformability of DL and DL-CD was much higher than that of CL. Moreover, DL-CD enhanced the amount of ITZ in SC and deeper skin layers compared to DL and CL. The antifungal activity of ITZ-loaded deformable liposomes remained intact compared to ITZ solution. It can be concluded that deformable liposomes in the presence of HPβCD may be a promising carrier for effective cutaneous delivery of ITZ.
    Colloids and surfaces B: Biointerfaces 06/2014; 121C:74-81. DOI:10.1016/j.colsurfb.2014.05.030 · 4.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathological features of disease appear to be quite different. Despite this diversity, the common feature of various disorders underlies physicochemical and biochemical factors such as surface tension. Human biological fluids comprise various proteins and phospholipids which are capable of adsorption at fluid interfaces and play a vital role in the physiological function of human organs. Surface tension of body fluids correlates directly to the development of pathological states. In this review, the variety of human diseases mediated by the surface tension changes of biological phenomena and the failure of biological fluids to remain in their native state are discussed. Dynamic surface tension measurements of human biological fluids depend on various parameters such as sex, age and changes during pregnancy or certain disease. It is expected that studies of surface tension behavior of human biological fluids will provide additional information and might become useful in medical practice. Theoretical background on surface tension measurement and surface tension values of reference fluids obtained from healthy and sick patients are depicted. It is well accepted that no single biomarker will be effective in clinical diagnosis. The surface tension measurement combined with routine lab tests may be a novel non-invasive method which can not only facilitate the discovery of diagnostic models for various diseases and its severity, but also be a useful tool for monitoring treatment efficacy. We therefore expect that studies of surface tension behavior of human biological fluids will provide additional useful information in medical practice.
    01/2015; 5(1):29-44. DOI:10.15171/bi.2015.06