Article

Relative roles of TGF-β1 and Wnt in the systemic regulation and aging of satellite cell responses

Department of Bioengineering, University of California-Berkeley, Berkeley, CA 94720, USA.
Aging cell (Impact Factor: 5.94). 10/2009; 8(6):676-89. DOI: 10.1111/j.1474-9726.2009.00517.x
Source: PubMed

ABSTRACT Muscle stem (satellite) cells are relatively resistant to cell-autonomous aging. Instead, their endogenous signaling profile and regenerative capacity is strongly influenced by the aged P-Smad3, differentiated niche, and by the aged circulation. With respect to muscle fibers, we previously established that a shift from active Notch to excessive transforming growth factor-beta (TGF-beta) induces CDK inhibitors in satellite cells, thereby interfering with productive myogenic responses. In contrast, the systemic inhibitor of muscle repair, elevated in old sera, was suggested to be Wnt. Here, we examined the age-dependent myogenic activity of sera TGF-beta1, and its potential cross-talk with systemic Wnt. We found that sera TGF-beta1 becomes elevated within aged humans and mice, while systemic Wnt remained undetectable in these species. Wnt also failed to inhibit satellite cell myogenicity, while TGF-beta1 suppressed regenerative potential in a biphasic fashion. Intriguingly, young levels of TGF-beta1 were inhibitory and young sera suppressed myogenesis if TGF-beta1 was activated. Our data suggest that platelet-derived sera TGF-beta1 levels, or endocrine TGF-beta1 levels, do not explain the age-dependent inhibition of muscle regeneration by this cytokine. In vivo, TGF-beta neutralizing antibody, or a soluble decoy, failed to reduce systemic TGF-beta1 and rescue myogenesis in old mice. However, muscle regeneration was improved by the systemic delivery of a TGF-beta receptor kinase inhibitor, which attenuated TGF-beta signaling in skeletal muscle. Summarily, these findings argue against the endocrine path of a TGF-beta1-dependent block on muscle regeneration, identify physiological modalities of age-imposed changes in TGF-beta1, and introduce new therapeutic strategies for the broad restoration of aged organ repair.

2 Followers
 · 
269 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell technologies have created new opportunities to generate unlimited numbers of human neurons in the lab and study neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Although some disease hallmarks have been reported in patient-derived stem cell models, it is proving more difficult to recapitulate the full phenotypic extent of these disorders. The problem with these stem cell models lies in the disparity between the advanced age of onset of neurodegenerative disorders and the embryonic nature of the in vitro derived cell types. In this review we discuss experimental methods of in vitro aging of neural cell types as a means to elicit late-onset symptoms in induced pluripotent stem cell (iPSC) models of neurodegenerative disease.
    Trends in Neurosciences 11/2014; DOI:10.1016/j.tins.2014.07.008 · 12.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perivascular multipotent cells, pericytes, contribute to the generation and repair of various tissues in response to injury. They are heterogeneous in their morphology, distribution, origin and markers, and elucidating their molecular and cellular differences may inform novel treatments for disorders in which tissue regeneration is either impaired or excessive. Moreover, these discoveries offer novel cellular targets for therapeutic approaches to many diseases. This review discusses recent studies that support the concept that pericyte subtypes play a distinctive role in myogenesis, neurogenesis, adipogenesis, fibrogenesis and angiogenesis.
    Clinical Science 01/2015; 128(2):81-93. DOI:10.1042/CS20140278 · 5.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new paradigm for drug research has emerged, namely the deliberate search for molecules able to selectively affect the proliferation, differentiation, and migration of adult stem cells within the tissues in which they exist. Recently, there has been significant interest in medicinal chemistry toward the discovery and design of low molecular weight molecules that affect stem cells and thus have novel therapeutic activity. We believe that a successful agent from such a discover program would have profound effects on the treatment of many long-term degenerative disorders. Among these conditions are examples such as cardiovascular decay, neurological disorders including Alzheimer's disease, and macular degeneration, all of which have significant unmet medical needs. This perspective will review evidence from the literature that indicates that discovery of such agents is achievable and represents a worthwhile pursuit for the skills of the medicinal chemist.
    Journal of Medicinal Chemistry 01/2015; DOI:10.1021/jm500838d · 5.48 Impact Factor

Full-text (3 Sources)

Download
45 Downloads
Available from
Jun 2, 2014