Glucocorticoid efficacy in asthma: Is improved tissue remodeling upstream of anti-inflammation

Children's National Medical Center, Washington, DC 20010, USA.
Journal of Investigative Medicine (Impact Factor: 1.69). 10/2009; 58(1):19-22.
Source: PubMed


Synthetic glucocorticoids (GCs), such as prednisone, are among the most widely prescribed drugs worldwide and are used to treat many acute and chronic inflammatory conditions. The current paradigm of GC efficacy is that they are potent anti-inflammatory agents. Decreased inflammation in many disorders is thought to lead to decreased pathological tissue remodeling. However, this model has never been validated. In particular, improvements in inflammation have not been shown to improve the rate of lung function decline in asthma. Herein, we present an alternative paradigm, where GC efficacy is mediated through more successful tissue remodeling, with reduction in inflammation secondary to successful regeneration.

Download full-text


Available from: Robert J Freishtat, Sep 26, 2014
  • Source
    • "The direct effect of glucocorticoids on transcript activation occurs through binding and activation glucocorticoid receptors (GR), which results in the translocation of glucocorticoid-receptor complexes to the nucleus and binding to glucocorticoid response elements (GREs) in the promoter region of target genes [43]. GREs are short sequences of DNA within the promoter that are able to bind glucocorticoid-receptor complexes and therefore regulate gene transcription. "
    [Show abstract] [Hide abstract]
    ABSTRACT: "Phosphatase and tensin homolog deleted on chromosome 10" (PTEN) is mostly considered to be a cancer-related gene, and has been suggested to be a new pathway of pathogenesis of asthma. The purpose of this study was to investigate the effects of the glucocorticoid, dexamethasone, on PTEN regulation. OVA-challenged mice were used as an asthma model to investigate the effect of dexamethasone on PTEN regulation. Immunohistochemistry was used to detect expression levels of PTEN protein in lung tissues. The human A549 cell line was used to explore the possible mechanism of action of dexamethasone on human PTEN regulation in vitro. A luciferase reporter construct under the control of PTEN promoter was used to confirm transcriptional regulation in response to dexamethasone. PTEN protein was found to be expressed at low levels in lung tissues in asthmatic mice; but the expression was restored after treatment with dexamethasone. In A549 cells, human PTEN was up-regulated by dexamethasone treatment. The promoter-reporter construct confirmed that dexamethasone could regulate human PTEN transcription. Treatment with the histone deacetylase inhibitor, TSA, could increase PTEN expression in A549 cells, while inhibition of histone acetylase (HAT) by anacardic acid attenuated dexamethasone-induced PTEN expression. Based on the data a new mechanism is proposed where glucocorticoids treat asthma partly through up-regulation of PTEN expression. The in vitro studies also suggest that the PTEN pathway may be involved in human asthma.
    Respiratory research 04/2011; 12(1):47. DOI:10.1186/1465-9921-12-47 · 3.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the continuous increase in the prevalence of asthma in the most underdeveloped parts of the world, nowadays, we can generally speak of a better understanding and management of this disease. The remarkable role played by the inflammatory process in asthmatic patients is well known. The aim of most asthma guidelines is to suppress inflammatory process with a combination of anti-inflammatory drugs and immunotherapy. The management of asthma in children is a challenge because of their inability to express warning signs and seek medical attention in a timely manner. Unlike adults, asthmatic children must rely on their parents or caregivers for the administration of asthma medications. This inability to carry and self-administer asthma drugs may increase the risk of non-compliance. Glucocorticosteroids, the most important drugs for patients with asthma, are associated with an increased level of side effects and compliance issues mostly in children. In an attempt to solve that dilemma, emphasis is being placed on the modification of current management tactics and the introduction of other drugs. This review presents more recent patent therapies for the management of asthma in children.
    Recent Patents on Inflammation & Allergy Drug Discovery 01/2011; 5(1):57-65. DOI:10.2174/187221311794474865
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is an inflammatory condition for which anti-inflammatory glucocorticoids are the standard of care. However, similar efficacy has not been shown for agents targeting inflammatory cells and pathways. This suggests a noninflammatory cell contributor (e.g., epithelium) to asthmatic inflammation. Herein, we sought to define the intrinsic and glucocorticoid-affected properties of asthmatic airway epithelium compared with normal epithelium. Human primary differentiated normal and asthmatic airway epithelia were cultured in glucocorticoid-free medium beginning at -48 hours. They were pulsed with dexamethasone (20 nM) or vehicle for 2 hours at -26, -2, +22, and +46 hours. Cultures were mechanically scrape-wounded at 0 hours and exposed continuously to bromodeoxyuridine (BrdU). Cytokine secretions were analyzed using cytometric bead assays. Wound regeneration/mitosis was analyzed by microscopy and flow cytometry. Quiescent normal (n = 3) and asthmatic (n = 6) epithelia showed similar minimal inflammatory cytokine secretion and mitotic indices. After wounding, asthmatic epithelia secreted more basolateral TGF-β1, IL-10, IL-13, and IL-1β (P < 0.05) and regenerated less efficiently than normal epithelia (+48 h wound area reduction = [mean ± SEM] 50.2 ± 7.5% versus 78.6 ± 7.7%; P = 0.02). Asthmatic epithelia showed 40% fewer BrdU(+) cells at +48 hours (0.32 ± 0.05% versus 0.56 ± 0.07% of total cells; P = 0.03), and those cells were more dyssynchronously distributed along the cell cycle (52 ± 10, 25 ± 4, 23 ± 7% for G1/G0, S, and G2/M, respectively) than normal epithelia (71 ± 1, 12 ± 2, and 17 ± 2% for G1/G0, S, and G2/M, respectively). Dexamethasone pulses improved asthmatic epithelial inflammation and regeneration/mitosis. In summary, we show that inflammatory/fibrogenic cytokine secretions are correlated with dyssynchronous mitosis upon injury. Intermittent glucocorticoids simultaneously decreased epithelial cytokine secretions and resynchronized mitosis. These data, generated in an airway model lacking inflammatory cells, support the concept that epithelium contributes to asthmatic inflammation.
    American Journal of Respiratory Cell and Molecular Biology 06/2011; 44(6):863-9. DOI:10.1165/rcmb.2010-0029OC · 3.99 Impact Factor
Show more