Article

A high-resolution magnetic tweezer for single-molecule measurements.

Materials Department, University of California, Santa Barbara, CA 93106, USA.
Nucleic Acids Research (Impact Factor: 8.81). 10/2009; 37(20):e136. DOI: 10.1093/nar/gkp725
Source: PubMed

ABSTRACT Magnetic tweezers (MT) are single-molecule manipulation instruments that utilize a magnetic field to apply force to a biomolecule-tethered magnetic bead while using optical bead tracking to measure the biomolecule's extension. While relatively simple to set up, prior MT implementations have lacked the resolution necessary to observe sub-nanometer biomolecular configuration changes. Here, we demonstrate a reflection-interference technique for bead tracking, and show that it has much better resolution than traditional diffraction-based systems. We enhance the resolution by fabricating optical coatings on all reflecting surfaces that optimize the intensity and contrast of the interference image, and we implement feedback control of the focal position to remove drift. To test the system, we measure the length change of a DNA hairpin as it undergoes a folding/unfolding transition.

0 Bookmarks
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All organisms need homologous recombination (HR) to repair DNA double-strand breaks. Defects in recombination are linked to genetic instability and to elevated risks in developing cancers. The central catalyst of HR is a nucleoprotein filament, consisting of recombinase proteins (human RAD51 or bacterial RecA) bound around single-stranded DNA. Over the last two decades, single-molecule techniques have provided substantial new insights into the dynamics of homologous recombination. Here, we survey important recent developments in this field of research and provide an outlook on future developments.
    Quarterly Reviews of Biophysics 09/2013; · 11.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herein, we demonstrate the control of magnetotactic bacteria through the application of magnetic field gradients with real-time visualization. We accomplish this control by integrating a pair of macroscale Helmholtz coils and lithographically fabricated nanoscale islands composed of permalloy (Ni80Fe20). This system enabled us to guide and steer amphitrichous Magnetospirillum magneticum strain AMB-1 to specific location via magnetic islands. The geometries of the islands allowed us to have control over the specific magnetic field gradients on the bacteria. We estimate that magnetotactic bacteria located less than 1 μm from the edge of a diamond shaped island experience a maximum force of approximately 34 pN, which engages the bacteria without trapping them. Our system could be useful for a variety of applications including magnetic fabrication, self-assembly, and probing the sensing apparatus of magnetotactic bacteria.
    Scientific Reports 01/2014; 4:4104. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic tweezers (MTW) enable highly accurate forces to be transduced to molecules to study mechanotransduction at the molecular or cellular level. We review recent MTW studies in single molecule and cell biophysics that demonstrate the flexibility of this technique. We also discuss technical advances in the method on several fronts, i.e., from novel approaches for the measurement of torque to multiplexed biophysical assays. Finally, we describe multi-component nanorods with enhanced optical and magnetic properties and discuss their potential as future MTW probes.
    Integrative Biology 11/2013; · 4.32 Impact Factor

Full-text

View
3 Downloads
Available from