Evidence for impaired sound intensity processing in schizophrenia.

University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
Schizophrenia Bulletin (Impact Factor: 8.8). 10/2009; 37(2):426-31. DOI: 10.1093/schbul/sbp092
Source: PubMed

ABSTRACT Patients with schizophrenia are impaired in many aspects of auditory processing, but indirect evidence suggests that intensity perception is intact. However, because the extraction of meaning from dynamic intensity relies on structures that appear to be altered in schizophrenia, we hypothesized that the perception of auditory looming is impaired as well. Twenty inpatients with schizophrenia and 20 control participants, matched for age, gender, and education, gave intensity ratings of rising (looming) and falling intensity sounds with different mean intensities. Intensity change was overestimated in looming as compared with receding sounds in both groups. However, healthy individuals showed a stronger effect at higher mean intensity, in keeping with previous findings, while patients with schizophrenia lacked this modulation. We discuss how this might support the notion of a more general deficit in extracting emotional meaning from different sensory cues, including intensity and pitch.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrophysiological methods have demonstrated disturbances of neural synchrony and oscillations in schizophrenia which affect a broad range of sensory and cognitive processes. These disturbances may account for a loss of neural integration and effective connectivity in the disorder. The mechanisms responsible for alterations in synchrony are not well delineated, but may reflect disturbed interactions within GABAergic and glutamatergic circuits, particularly in the gamma range. Auditory steady-state responses (ASSRs) provide a non-invasive technique used to assess neural synchrony in schizophrenia and in animal models at specific response frequencies. ASSRs are electrophysiological responses entrained to the frequency and phase of a periodic auditory stimulus generated by auditory pathway and auditory cortex activity. Patients with schizophrenia show reduced ASSR power and phase locking to gamma range stimulation. We review alterations of ASSRs in schizophrenia, schizotypal personality disorder, and first-degree relatives of patients with schizophrenia. In vitro and in vivo approaches have been used to test cellular mechanisms for this pattern of findings. This translational, cross-species approach provides support for the role of N-methyl-D-aspartate and GABAergic dysregulation in the genesis of perturbed ASSRs in schizophrenia and persons at risk.
    Supplements to Clinical neurophysiology 01/2013; 62:101-12.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A number of studies have implicated disruptions in prepulse inhibition (PPI) of the startle response in both schizophrenia patients and animal models of this disorder. These disruptions are believed to reflect deficits in sensorimotor gating and are ascribed to aberrant filtering of sensory inputs leading to sensory overload and enhanced "noise" in neural structures. Here we examined auditory evoked potentials in a rodent model of schizophrenia (MAM-GD17) during an auditory PPI paradigm to better understand this phenomenon. MAM rats exhibited reductions in specific components of auditory evoked potentials in the orbitofrontal cortex and an abolition of the graded response to stimuli of differing intensities indicating deficient intensity processing in the orbitofrontal cortex. These data indicate that aberrant sensory information processing, rather than being attributable to enhanced noise in neural structures, may be better attributed to diminished evoked amplitudes resulting in a reduction in the "signal-to-noise" ratio. Therefore, the ability for sensory input to modulate the ongoing background activity may be severely disrupted in schizophrenia yielding an internal state which is insufficiently responsive to external input.
    Journal of Psychiatric Research 08/2013; · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Assessment of the musical ability of people with schizophrenia has attracted little interest despite the diverse and substantive findings of impairments in sound perception and processing and the therapeutic effect of music in people with the illness. The present study investigated the musical ability of people with schizophrenia and the association with psychiatric symptoms and cognition. We recruited patients with chronic schizophrenia and healthy controls for participation in our study. To measure musical ability and cognitive function, we used the Montreal Battery of Evaluation of Amusia (MBEA) and the Brief Assessment of Cognition in Schizophrenia (BACS). We carried out a mediation analysis to investigate a possible pathway to a deficit in musical ability. We enrolled 50 patients and 58 controls in the study. The MBEA global score in patients with schizophrenia was significantly lower than that in controls (p < 0.001), and was strongly associated with both the composite cognitive function score (r = 0.645, p < 0.001) and the negative symptom score (r = -0.504, p < 0.001). Further analyses revealed direct and indirect effects of negative symptoms on musical ability. The indirect effects were mediated through cognitive impairment. The relatively small sample size did not permit full evaluation of the possible effects of age, sex, education, medication and cultural influences on the results. Examining the associations between musical deficits, negative symptoms and cognitive imapirment in patients with schizophrenia may identify shared biological mechanisms.
    Journal of psychiatry & neuroscience: JPN 10/2013; 38(5):120207. · 6.24 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014