Article

Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms.

Department of Psychology, University of California at Los Angeles, 90095, USA.
Biological psychiatry (Impact Factor: 9.47). 10/2009; 66(11):1055-60. DOI: 10.1016/j.biopsych.2009.07.019
Source: PubMed

ABSTRACT No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data.
Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects.
Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation.
These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia.

Download full-text

Full-text

Available from: Daqiang Sun, Jun 19, 2015
0 Followers
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemodynamic changes in the brain have been reported in major psychosis in respect to healthy controls, and could unveil the basis of structural brain modifications happening in patients. The study of first episode psychosis is of particular interest because the confounding role of chronicity and medication can be excluded. The aim of this work is to automatically discriminate first episode psychosis patients and normal controls on the basis of brain perfusion employing a support vector machine (SVM) classifier. 35 normal controls and 35 first episode psychosis underwent dynamic susceptibility contrast magnetic resonance imaging, and cerebral blood flow and volume, along with mean transit time were obtained. We investigated their behavior in the whole brain and in selected regions of interest, in particular the left and right frontal, parietal, temporal and occipital lobes, insula, caudate and cerebellum. The distribution of values of perfusion indexes were used as features in a support vector machine classifier. Mean values of blood flow and volume were slightly lower in patients, and the difference reached statistical significance in the right caudate, left and right frontal lobes, and in left cerebellum. Linear SVM reached an accuracy of 83% in the classification of patients and normal controls, with the highest accuracy associated with the right frontal lobe and left parietal lobe. In conclusion, we found evidence that brain perfusion could be used as a potential marker to classify patients with psychosis, who show reduced blood flow and volume in respect to normal controls. Copyright © 2015 Elsevier B.V. All rights reserved.
    Schizophrenia Research 04/2015; 165(1). DOI:10.1016/j.schres.2015.03.017 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diagnosis of pediatric neuropsychiatric disorders such as unipolar depression is largely based on clinical judgment - without objective biomarkers to guide diagnostic process and subsequent therapeutic interventions. Neuroimaging studies have previously reported average group-level neuroanatomical differences between patients with pediatric unipolar depression and healthy controls. In the present study, we investigated the utility of multiple neuromorphometric indices in distinguishing pediatric unipolar depression patients from healthy controls at an individual subject level. We acquired structural T1-weighted scans from 25 pediatric unipolar depression patients and 26 demographically matched healthy controls. Multiple neuromorphometric indices such as cortical thickness, volume, and cortical folding patterns were obtained. A support vector machine pattern classification model was 'trained' to distinguish individual subjects with pediatric unipolar depression from healthy controls based on multiple neuromorphometric indices and model predictive validity (sensitivity and specificity) calculated. The model correctly identified 40 out of 51 subjects translating to 78.4% accuracy, 76.0% sensitivity and 80.8% specificity, chi-square p-value = 0.000049. Volumetric and cortical folding abnormalities in the right thalamus and right temporal pole respectively were most central in distinguishing individual patients with pediatric unipolar depression from healthy controls. These findings provide evidence that a support vector machine pattern classification model using multiple neuromorphometric indices may qualify as diagnostic marker for pediatric unipolar depression. In addition, our results identified the most relevant neuromorphometric features in distinguishing PUD patients from healthy controls. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Psychiatric Research 02/2015; 62. DOI:10.1016/j.jpsychires.2015.01.015 · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Objective: Among children <13 years of age with persistent psychosis and contemporaneous decline in functioning, it is often difficult to determine if the diagnosis of childhood onset schizophrenia (COS) is warranted. Despite decades of experience, we have up to a 44% false positive screening diagnosis rate among patients identified as having probable or possible COS; final diagnoses are made following inpatient hospitalization and medication washout. Because our lengthy medication-free observation is not feasible in clinical practice, we constructed diagnostic classifiers using screening data to assist clinicians practicing in the community or academic centers. Methods: We used cross-validation, logistic regression, receiver operating characteristic (ROC) analysis, and random forest to determine the best algorithm for classifying COS (n=85) versus histories of psychosis and impaired functioning in children and adolescents who, at screening, were considered likely to have COS, but who did not meet diagnostic criteria for schizophrenia after medication washout and inpatient observation (n=53). We used demographics, clinical history measures, intelligence quotient (IQ) and screening rating scales, and number of typical and atypical antipsychotic medications as our predictors. Results: Logistic regression models using nine, four, and two predictors performed well with positive predictive values>90%, overall accuracy>77%, and areas under the curve (AUCs)>86%. Conclusions: COS can be distinguished from alternate disorders with psychosis in children and adolescents; greater levels of positive and negative symptoms and lower levels of depression combine to make COS more likely. We include a worksheet so that clinicians in the community and academic centers can predict the probability that a young patient may be schizophrenic, using only two ratings.
    Journal of Child and Adolescent Psychopharmacology 07/2014; 24(7). DOI:10.1089/cap.2013.0139 · 3.07 Impact Factor