Genotoxic damage of human adipose-tissue derived mesenchymal stem cells triggers their terminal differentiation

Laboratory of Molecular Oncology, Cancer Research Institute, Bratislava, Slovakia.
Neoplasma (Impact Factor: 1.64). 02/2009; 56(6):542-7. DOI: 10.4149/neo_2009_06_542
Source: PubMed

ABSTRACT Human adipose tissue-derived mesenchymal (stromal) stem cells (AT-MSCs) and genetically modified to express cytosine deaminase:uracil phosphoribosyltransferase (CDy-AT-MSCs) were treated with hydrogen peroxide in order to induce DNA damage and subsequently evaluate their genetic stability by single cell gel electrophoresis. Both cells types (parental and transgene modified) did not differ in the sensitivity to DNA breaks induction. Potential tumorigenicity of AT-MSCs and CDy-AT-MSCs was tested by subcutaneous inoculation of cell suspension into flank of immunocompromised mice. Dose of 15x10(6) cells was not found to be tumorigenic in given experimental setup. AT-MSCs, CDy-AT-MSCs and MSCs isolated from human lipoma were treated with chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) in attempts to transform them. Surviving cells after genotoxic stress were not transformed but underwent replicative senescence. Irreparable DNA damage caused triggered adipogenic terminal differentiation, rather than apoptosis induction in all kinds of cells tested.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adipocyte differentiation, or adipogenesis, is a complex and highly regulated process. A recent proteomic analysis has predicted that the nonreceptor tyrosine kinase Abelson murine leukemia viral oncogene (c-Abl) is a putative key regulator of adipogenesis, but the underlying mechanism remained obscure. We found that c-Abl was activated during the early phase of mouse 3T3-L1 preadipocyte differentiation. Moreover, c-Abl activity was essential and its inhibition blocked differentiation to mature adipocytes. c-Abl directly controlled the expression and activity of the master adipogenic regulator peroxisome proliferator-activator receptor gamma 2 (PPARγ2). PPARγ2 physically associated with c-Abl and underwent phosphorylation on two tyrosine residues within its regulatory activation function 1 (AF1) domain. We demonstrated that this process positively regulates PPARγ2 stability and adipogenesis. Remarkably, c-Abl binding to PPARγ2 required the Pro12 residue that has a phenotypically well-studied common human genetic proline 12 alanine substitution (Pro12Ala) polymorphism. Our findings establish a critical role for c-Abl in adipocyte differentiation and explain the behavior of the known Pro12Ala polymorphism.
    Proceedings of the National Academy of Sciences 11/2014; DOI:10.1073/pnas.1411086111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemophilia A is a hereditary disorder caused by various mutations in factor VIII gene resulting in either a severe deficit or total lack of the corresponding activity. Recent success in gene therapy of a related disease, hemophilia B, gives new hope that similar success can be achieved for hemophilia A as well. To develop a gene therapy strategy for the latter, a variety of model systems are needed to evaluate molecular engineering of the factor VIII gene, vector delivery efficacy and safety-related issues. Typically, a tissue culture cell line is the most convenient way to get a preliminary glimpse of the potential of a vector delivery strategy. It is then followed by extensive testing in hemophilia A mouse and dog models. Newly developed hemophilia A sheep may provide yet another tool for evaluation of factor VIII gene delivery vectors. Hemophilia models based on other species may also be developed since hemophiliac animals have been identified or generated in rat, pig, cattle and horse. Although a genetic nonhuman primate hemophilia A model has yet to be developed, the non-genetic hemophilia A model can also be used for special purposes when specific questions need to be addressed that cannot not be answered in other model systems. Hemophilia A is caused by a functional deficiency in the factor VIII gene. This X-linked, recessive bleeding disorder affects approximately 1 in 5000 males [1-3]. Clinically, it is characterized by frequent and spontaneous joint hemorrhages, easy bruising and prolonged bleeding time. The coagulation activity of FVIII dictates severity of the clinical symptoms. Approximately 50% of all cases are classified as severe with less than 1% of normal levels of factor VIII detected [4]. This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding. In contrast, patients with 5-30% of normal factor VIII activity exhibit mild clinical manifestations.
    01/2013; Suppl 1. DOI:10.4172/2157-7412.S1-014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemophilia A (HA) is the most frequent inheritable defect of the coagulation proteins. The current standard of care for patients with HA is prophylactic factor infusion, which is comprised of regular (2-3 times per week) intravenous infusions of recombinant or plasma-derived FVIII to maintain hemostasis. While this treatment has greatly increased the quality of life and lengthened the life expectancy for many HA patients, its high cost, the need for lifelong infusions, and the fact that it is unavailable to roughly 75% of the world's HA patients make this type of treatment far from ideal. In addition, this lifesaving therapy suffers from a high risk of treatment failure due to immune response to the infused FVIII. There is thus a need for novel treatments, such as those using stem cells and/or gene therapy, which have the potential to mediate long-term correction or permanent cure following a single intervention. In the present review, we discuss the clinical feasibility and unique advantages that an in utero approach to treating HA could offer, placing special emphasis on a new sheep model of HA we have developed and on the use of mesenchymal stromal cells (MSC) as cellular vehicles for delivering the FVIII gene.
    Frontiers in Pharmacology 01/2014; 5:276. DOI:10.3389/fphar.2014.00276


Available from
May 21, 2014