Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation.

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA.
Nature (Impact Factor: 42.35). 10/2009; 461(7263):537-41. DOI: 10.1038/nature08313
Source: PubMed

ABSTRACT Reactive oxygen species (ROS), produced during various electron transfer reactions in vivo, are generally considered to be deleterious to cells. In the mammalian haematopoietic system, haematopoietic stem cells contain low levels of ROS. However, unexpectedly, the common myeloid progenitors (CMPs) produce significantly increased levels of ROS(2). The functional significance of this difference in ROS level in the two progenitor types remains unresolved. Here we show that Drosophila multipotent haematopoietic progenitors, which are largely akin to the mammalian myeloid progenitors, display increased levels of ROS under in vivo physiological conditions, which are downregulated on differentiation. Scavenging the ROS from these haematopoietic progenitors by using in vivo genetic tools retards their differentiation into mature blood cells. Conversely, increasing the haematopoietic progenitor ROS beyond their basal level triggers precocious differentiation into all three mature blood cell types found in Drosophila, through a signalling pathway that involves JNK and FoxO activation as well as Polycomb downregulation. We conclude that the developmentally regulated, moderately high ROS level in the progenitor population sensitizes them to differentiation, and establishes a signalling role for ROS in the regulation of haematopoietic cell fate. Our results lead to a model that could be extended to reveal a probable signalling role for ROS in the differentiation of CMPs in mammalian haematopoietic development and oxidative stress response.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal homeostasis requires precise control of intestinal stem cell (ISC) proliferation. In Drosophila, this control declines with age largely due to chronic activation of stress signaling and associated chronic inflammatory conditions. An important contributor to this condition is the age-associated increase in endoplasmic reticulum (ER) stress. Here we show that the PKR-like ER kinase (PERK) integrates both cell-autonomous and non-autonomous ER stress stimuli to induce ISC proliferation. In addition to responding to cell-intrinsic ER stress, PERK is also specifically activated in ISCs by JAK/Stat signaling in response to ER stress in neighboring cells. The activation of PERK is required for homeostatic regeneration, as well as for acute regenerative responses, yet the chronic engagement of this response becomes deleterious in aging flies. Accordingly, knocking down PERK in ISCs is sufficient to promote intestinal homeostasis and extend lifespan. Our studies highlight the significance of the PERK branch of the unfolded protein response of the ER (UPRER) in intestinal homeostasis and provide a viable strategy to improve organismal health- and lifespan.
    PLoS Genetics 05/2015; 11(5):e1005220. DOI:10.1371/journal.pgen.1005220 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular senescence is characterized by functional decline induced by cumulative damage to DNA, proteins, lipids, and carbohydrates. Previous studies have reported that replicative senescence is caused by excessive amounts of reactive oxygen species (ROS) produced as a result of aerobic energy metabolism. In this study, we established human bone marrow mesenchymal stromal cells (hBM-MSCs) in replicative senescence after culture over a long term to investigate the relationship between ROS levels and stem cell potential and to determine whether differentiation potential can be restored by antioxidant treatment. Intracellular ROS levels were increased in hBM-MSCs; this was accompanied by a decrease in the expression of the antioxidant enzymes catalase and superoxide dismutase (SOD)1 and 2 and of phosphorylated forkhead box O1 (p-FOXO1) as well as an increase in the expression of p53 and p16, along with a reduction in differentiation potential. When the antioxidant ascorbic acid was used to eliminate excess ROS, the levels of antioxidant enzymes (catalase, SOD1 and 2, p-FOXO1, and p53) were partly restored. Moreover, differentiation into adipocytes and osteocytes was higher in hBM-MSCs treated with ascorbic acid than in the untreated control cells. These results suggest that the decline in differentiation potential caused by increased endogenous ROS production during in vitro expansion can be reversed by treatment with antioxidants such as ascorbic acid. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 03/2015; 213(4). DOI:10.1016/j.bbrc.2015.03.136 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute promyelocytic leukemia (APL) results from a blockade of granulocyte differentiation during the promyelocytic stage. As a fusion protein of promyelocytic leukemia (PML) and retinoic acid receptor-α (RARα), PML-RARα oncoprotein is degraded through the differentiation of all-trans retinoic acid (ATRA)-induced cells. Here reactive oxygen species (ROS) and high-mobility group box 1 (HMGB1) were proven essential for the differentiation of APL cells. A down-regulation of ROS by ROS quencher (NAC) blocked the differentiation of APL cell line NB4 while an over-expression of ROS by superoxide dismutase-1 (SOD1) RNA interference (RNAi) increased cell differentiation. HMGB1 was vital for the differentiation of ROS-mediated NB4 cells and its up-regulation promoted ATRA-induced autophagy and the degradation of PML-RARα. Furthermore, ATRA treatment elevated the levels of ROS, enhanced autophagic flux and thereby promoted cytosolic translocation of HMGB1. HMGB1 regulated the interactions between ubiquitin-binding adaptor protein p62/SQSTM and PML-RARα so as to affect the degradation of PML-RARα during ATRA-induced autophagy. Also a depletion of p62/SQSTM1 expression inhibited HMGB1-mediated PML-RARα degradation and cell differentiation. The overall results suggested that HMGB1 is an essential regulator of ROS-induced cell differentiation. And it may become a potential drug target for therapeutic intervention of APL.
    American Journal of Cancer Research 01/2015; 5(2):714-25. · 3.97 Impact Factor