B Cell Receptor and BAFF Receptor Signaling Regulation of B Cell Homeostasis

Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
The Journal of Immunology (Impact Factor: 5.36). 10/2009; 183(6):3561-7. DOI: 10.4049/jimmunol.0800933
Source: PubMed

ABSTRACT B lymphocyte homeostasis depends on tonic and induced BCR signaling and receptors sensitive to trophic factors, such as B cell-activating factor receptor (BAFF-R or BR3) during development and maintenance. This review will discuss growing evidence suggesting that the signaling mechanisms that maintain B cell survival and metabolic fitness during selection at transitional stages and survival after maturation rely on cross-talk between BCR and BR3 signaling. Recent findings have also begun to unravel the molecular mechanisms underlying this crosstalk. In this review I also propose a model for regulating the amplitude of BCR signaling by a signal amplification loop downstream of the BCR involving Btk and NF-kappaB that may facilitate BCR-dependent B cell survival as well as its functional coupling to BR3 for the growth and survival of B lymphocytes.

Download full-text


Available from: Wasif Noor Khan, Mar 13, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BLyS family members govern selection and survival of cells in the preimmune B cell compartment, and emerging evidence suggests similar roles in antigen-experienced B cell pools. We review the features of this family, with particular emphasis on recent findings of how BLyS influences affinity maturation in germinal centers, which lie at the intersection of the pre-immune and antigen-experienced B cell compartments. We propose a model whereby tolerogenic selection at the transitional stage and affinity maturation in the germinal center employ the same BLyS driven mechanism.
    Cytokine & growth factor reviews 04/2014; DOI:10.1016/j.cytogfr.2014.01.001 · 6.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The death receptor, CD95/Fas, serves to eliminate potentially dangerous, self-reactive B cells. Engagement of B-cell receptors (BCR) on mature B-cells mediates the escape from cell death resulting in the activation and expansion of antigen specific clones. In addition to the antigen receptors, the receptors of B-cell activating factor belong to the tumor necrosis factor (TNF) family (BAFFR); moreover, the pattern recognition receptor, TLR9 may also deliver survival signals inhibiting Fas-mediated death of B-cells. Our aim was to compare the mechanism of BCR-induced and the BAFFR- or TLR9-stimulated rescue of B-cells from CD95/Fas-mediated apoptosis. We have found that BAFFR and TLR9 collaborate with BCR to protect B-cells from Fas-induced elimination and the rescue is independent of protein synthesis. The results revealed that the TLR9- and BCR-triggered rescue signals are transmitted through partially overlapping pathways; the protein kinase C (PKC) and the abl kinase induced phosphorylation may inactivate caspases in both CpG and anti-IgG stimulated cells. However, PI3-K activation is crucial upon the BCR driven anti-apoptotic effect, while p38 MAPK-mediated inactivation of caspases seems to play essential role in TLR9-mediated protection against Fas-induced programmed cell death.
    Immunology letters 03/2012; 143(1):77-84. DOI:10.1016/j.imlet.2012.02.006 · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BAFF is a potent B-cell survival factor, and it plays an essential role in B-cell homeostasis and B-cell function in the periphery. Both normal and autoreactive B cells are BAFF dependent; however, excess BAFF promotes the survival, growth, and maturation of autoreactive B cells. When overexpressed, BAFF protects B cells from apoptosis, thereby contributing to autoimmunity. Three independent studies have shown higher BAFF levels in the circulation of MG patients. BAFF may play an important role in the pathogenesis of MG. BAFF antagonists may well provide new treatment options for MG patients, particularly those patients with thymic lymphoid follicular hyperplasia.
    11/2011; 2011:939520. DOI:10.4061/2011/939520