Article

AKT controls human first trimester trophoblast cell sensitivity to FAS-mediated apoptosis by regulating XIAP expression.

Department of Molecular, Cellular, and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
Biology of Reproduction (Impact Factor: 4.03). 10/2009; 82(1):146-52. DOI: 10.1095/biolreprod.109.078972
Source: PubMed

ABSTRACT The PIK3/AKT pathway plays an important role in both the inhibition of the apoptotic cascade and the promotion of cell growth and proliferation. Multiple apoptosis-related targets of phosphatidylinositide 3-kinase (PIK3) and protein kinase B (AKT) have been identified, including the antiapoptotic protein XIAP. By phosphorylating XIAP, AKT was previously shown to prevent the ubiquitinization and degradation of XIAP. First-trimester trophoblast cells express high levels of XIAP, which protects them from certain apoptotic stimuli. In this study, we determine that the inhibition of the PIK3/AKT pathway induces XIAP inactivation and the activation of caspase 3 in first-trimester trophoblast cells. Using a specific AKT inhibitor and a XIAP mutant construct, which mimics the AKT phosphorylated form of XIAP, we also demonstrate that these effects are dependent on the phosphorylation of XIAP by AKT. Finally, we show that the selective inhibition of AKT renders normally resistant first-trimester trophoblast cells sensitive to FAS-mediated apoptosis by regulating XIAP expression. Our findings may provide a link between AKT, XIAP, and the regulation of the FAS apoptotic cascade in first-trimester trophoblast cells and contribute to our current knowledge of the molecular mechanisms mediating normal trophoblast physiology during pregnancy.

0 Bookmarks
 · 
173 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine whether lentivirus-mediated shRNA targeting the X-linked inhibitor of apoptosis protein (XIAP) gene could be exploited in the treatment of pancreatic cancer. Human pancreatic cancer cells Panc-1, Mia-paca2, Bxpc-3 and SW1990, infected with lentivirus, were analyzed by real-time polymerase chain reaction (PCR). Western blotting was used to examine XIAP protein levels, survivin and p-Akt to confirm the result of real-time PCR and determine the possible mechanism. The 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to measure IC₅₀ to determine chemosensitivity to the chemotherapeutic drugs 5-fluorouracil (5-FU) and gemcitabine. A colony assay, MTT assay and a tumorigenicity experiment were used to study cell proliferation in vitro and in vivo. Caspase-3/7 activity, 4',6-diamidino-2-phenylindole-staining and flow cytometric measurements were used to study apoptosis in SW1990 cells. XIAP proteins were found to be differentially expressed among pancreatic cancer cell lines Panc-1, Mia-paca2, Bxpc-3 and SW1990. Data of real-time PCR and Western blotting showed that XIAP was reduced persistently and markedly by lentivirus-mediated shRNA. Downregulation of XIAP by transfection with XIAP shRNA resulted in decreased p-Akt expression. XIAP shRNA also inhibited the growth of pancreatic cancer cells in vitro and in vivo, enhanced drug-induced apoptosis and increased chemosensitivity to 5-FU and gemcitabine. Results also suggest that inhibition of XIAP and subsequent p-Akt depletion may have an anti-tumor effect through attenuating the ability of cancer cells to survive. Lentivirus-mediated gene therapy is an attractive strategy in the treatment of pancreatic cancer and justifies the use of lentivirus in pancreatic cancer gene therapy studies.
    World Journal of Gastroenterology 06/2012; 18(23):2956-65. · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase B/AKT is critically involved in murine placental development and migration of human placental trophoblasts into maternal uterine tissue. However, localization of the three AKT isoforms within human placenta and their roles in extravillous trophoblasts has not been elucidated. Therefore, we analyzed the expression pattern and function of AKT1, AKT2, and AKT3 in migratory human trophoblasts using SGHPL-5 cell pools stably expressing small-hairpin microRNA (shRNAmir) against AKT1, AKT2, or AKT3 as a model. Western blot analyses using isoform-specific antibodies revealed ubiquitous expression of AKT1, AKT2, and AKT3 in primary villous and extravillous trophoblasts and the trophoblastic cell lines JEG-3, HTR-8/SVneo and SGHPL-5. Immunofluorescence of first trimester placentae localized AKT2 and AKT3 to the cytoplasm and nucleus, respectively, in all subtypes of cytotrophoblasts, whereas AKT1 was detected in both cellular compartments. A similar distribution of AKT isoforms was detectable in SGHPL-5 cells. Gene silencing using shRNAmir decreased protein expression of AKT1, AKT2, and AKT3 to 16%, 8% and 11%, respectively, in SGHPL-5 cells. Compared to shRNAmir controls, proliferation and camptothecin-induced apoptosis were not affected in the different AKT knock-down cells. However, basal and epidermal growth factor (EGF)-induced trophoblast migration was significantly reduced in AKT1 and AKT3 gene-silenced cells, whereas downregulation of AKT2 was not effective. Accordingly, a decrease in EGF-stimulated phosphorylation of AKT (Ser473 and Thr308) and its downstream target mTORC1 (Ser 2448) was noticed in AKT1 and AKT3 shRNAmir cell pools. In summary, the results suggest that the AKT isoforms 1 and 3 promote basal as well as EGF-induced trophoblast migration.
    Biology of Reproduction 01/2013; · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis in the human endometrium plays an essential role for endometrial receptivity and early implantation. A dysbalance of pro- and anti-apoptotic events in the secretory endometrium seems to be involved in implantation disorders and consecutive pregnancy complications. However, little is known about the mechanisms regulating apoptosis-sensitivity in the human endometrium. Therefore this study was performed to identify molecular mechanisms underlying the resistance toward apoptosis in human endometrial stromal cells (ESCs). Human ESCs were isolated from hysterectomy specimens and used as undifferentiated cells or after decidualization in vitro. Cells were incubated with an activating anti-Fas antibody, tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), TNF-α and inhibitors of protein- and RNA-syntheses, a caspase-inhibitor and inhibitors of extracellular signal regulated kinase (Erk)1/2, nuclear factor (NF)-κB and Akt. Apoptosis was measured by flow cytometric detection of hypodiploid nuclei. Caspase-activity was detected by luminescencent assays. Several pro- and anti-apoptotic molecules and the activation of Erk1/2, NF-κB and Akt were analyzed by in-cell Western assays or flow cytometry. Inhibition of protein- and RNA-syntheses differentially sensitized human ESCs for death receptor-mediated apoptosis in a caspase-dependent manner, based on the up-regulation of the death receptors Fas and TRAIL-R2. The constitutive activity of Erk1/2 and NF-κB could be identified as a reason for the apoptosis-resistance of human ESCs. These results suggest the pro-survival signaling pathways Erk1/2 and NF-κB as key regulators of the sensitivity of human ESCs for death receptor-mediated apoptosis. The modulation of these pathways might play an important role in the physiology of implantation.
    Reproductive biology 06/2013; 13(2):113-121. · 1.22 Impact Factor

Full-text (2 Sources)

View
3 Downloads
Available from
May 30, 2014