Arginine methyltransferase CARM1/PRMT4 regulates endochondral ossification

Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
BMC Developmental Biology (Impact Factor: 2.67). 10/2009; 9(1):47. DOI: 10.1186/1471-213X-9-47
Source: PubMed


Chondrogenesis and subsequent endochondral ossification are processes tightly regulated by the transcription factor Sox9 (SRY-related high mobility group-Box gene 9), but molecular mechanisms underlying this activity remain unclear. Here we report that coactivator-associated arginine methyltransferase 1 (CARM1) regulates chondrocyte proliferation via arginine methylation of Sox9.
CARM1-null mice display delayed endochondral ossification and decreased chondrocyte proliferation. Conversely, cartilage development of CARM1 transgenic mice was accelerated. CARM1 specifically methylates Sox9 at its HMG domain in vivo and in vitro. Arg-methylation of Sox9 by CARM1 disrupts interaction of Sox9 with beta-catenin, regulating Cyclin D1 expression and cell cycle progression of chondrocytes.
These results establish a role for CARM1 as an important regulator of chondrocyte proliferation during embryogenesis.

Download full-text


Available from: Martin Lotz, Oct 05, 2015
30 Reads
  • Source
    • "The structure of the HMG box and the residues flanking methylation site of Sox2 are conserved among Sox family members (Supporting information Figure S7) [20]. Recently, CARM1 was reported to methylate Sox9, a Sox family member implicated in chondrogenesis and sex determination [21]. Therefore, it is reasonable to hypothesize that the CARM1-mediated arginine methylation is a prevalent modulation mechanism throughout the Sox family. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sox2 is a key component of the transcription factor network that maintains the pluripotent state of embryonic stem cells (ESCs). Sox2 is regulated by multiple post-translational modifications, including ubiquitination, sumoylation, acetylation and phosphorylation. Here we report that Sox2 is in association with and methylated by coactivator-associated arginine methyltransferase 1 (CARM1), a protein arginine methyltransferase that plays a pivotal role in ESCs. We found that CARM1 facilitates Sox2-mediated transactivation and directly methylates Sox2 at arginine 113. This methylation event enhances Sox2 self-association. Furthermore, the physiological retention of Sox2 on chromatin restricts the Sox2 methylation level. Our study reveals the direct regulation of Sox2 by CARM1 that sheds lights on how arginine methylation signals are integrated into the pluripotent transcription factor network.
    PLoS ONE 10/2011; 6(10):e27026. DOI:10.1371/journal.pone.0027026 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been shown theoretically that the specific on-resistance of the drift region of SiC metal oxide semiconductor field effect transistor (MOSFET) is about 200 times lower than that of a Si MOSFET with the same breakdown voltage (Bhatnagar and Balaiga, 1993). However, the blocking performance of the trench MOSFET (TMOSFET) is limited by the breakdown of the gate dielectric and not by avalanche breakdown in the SiC (Agarwal et al., 1996). Our analysis indicates that this is because the electric field in the SiO<sub>2</sub> gate dielectric exceeds the dielectric breakdown field strength when high voltages are being blocked by the MOSFET well before the electric field in the SiC is high enough to cause avalanche breakdown in the semiconductor. This paper will introduce, for the first time, a P-type polysilicon filled trench (P-trench) in the TMOSFET that is deeper than the trench gate. The high electric field stress in the oxide is moved to the corner of the P-trench. Hence, the electric field problem can be solved without the need to replace the SiO<sub>2</sub> with high dielectric constant gate insulators as suggested by others (Sridevan and Baliga, 1997).
    Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th International Conference on; 11/2004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code.
    FEBS letters 11/2010; 585(13):2024-31. DOI:10.1016/j.febslet.2010.11.010 · 3.17 Impact Factor
Show more