Interleukin-15 increases calcineurin expression in 3T3-L1 cells: possible involvement on in vivo adipocyte differentiation.

Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
International Journal of Molecular Medicine (Impact Factor: 1.96). 11/2009; 24(4):453-8. DOI: 10.3892/ijmm_00000252
Source: PubMed

ABSTRACT Different studies have revealed that the Ca2+-dependent serine/threonine phosphatase calcineurin is involved in the regulation of adipocyte differentiation. Calcineurin acts as a Ca2+-dependent molecular switch that negatively regulates the ability of 3T3-L1 cells to undergo adipocyte differentiation by preventing the expression of critical proadipogenic transcription factors. In this study we investigated the role of interleukin-15 (IL-15), a cytokine previously known to be involved in the control of fat accretion by adipose cells, in the differentiation of the 3T3-L1 preadipose cell line. We found that IL-15 is able to increase alpha-calcineurin mRNA content in white adipose tissue of rats chronically treated with the cytokine and also in the 3T3-L1 preadipose cell line. Moreover, IL-15 promoted a decrease in both leptin mRNA expression and lipid accumulation, as estimated by Red Oil O staining. Cotreatment with IL-15 and FK506 (a calcineurin inhibitor) resulted in no changes in lipid content compared with the non-treated group. These data suggest that IL-15 directly inhibits adipogenesis, possibly by upregulating alpha-calcineurin and preventing the induction of adipocyte differentiation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-15 (IL-15) is a cytokine which inhibits lipid deposition in cultured adipocytes and decreases adipose tissue deposition in laboratory rodents. In human subjects, negative correlations between circulating IL-15 levels and both total and abdominal fat have been demonstrated. Deletions of IL15 in humans and mice are associated with obesity, while gain-of-function IL-15 overexpressing mice are resistant to diet-induced obesity. IL-15 is highly (but not exclusively) expressed at the mRNA level in skeletal muscle tissue, and the regulation of IL-15 translation and secretion is complex. Conflicting evidence exists concerning whether circulating IL-15 is released from skeletal muscle tissue in response to exercise or other physiological stimuli. The IL-15 receptor-alpha (IL-15Rα) subunit has a complex biochemistry, encoding both membrane-bound and soluble forms which can modulate IL-15 secretion and bioactivity. The gene encoding this receptor, IL15RA, resides on human chromosome 10p, a location linked to obesity and type-2 diabetes. Several single-nucleotide polymorphisms (SNPs) in human IL15RA and IL15 correlate with adiposity and markers of the metabolic syndrome. Genetic variation in IL15RA may modulate IL-15 bioavailability, which in turn regulates adiposity. Thus, IL-15 and the IL-15Rα may be novel targets for pharmacologic control of obesity in the human population.
    Journal of obesity 01/2011; 2011:456347.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a chronic inflammatory condition characterized by activation and infiltration of proinflammatory immune cells and a dysregulated production of proinflammatory cytokines. While known as a key regulator of immune natural killer (NK) cell function and development, we have recently demonstrated that reduced expression of the cytokine Interleukin-15 (IL-15) is closely linked with increased body weight and adiposity in mice and humans. Previously, we and others have shown that obese individuals have lower circulating levels of IL-15 and NK cells. Lean IL-15 overexpressing (IL-15 tg) mice had an accumulation in adipose NK cells compared to wildtype and NK cell deficient obese IL-15(-/-) mice. Since IL-15 induces weight loss in IL-15(-/-) and diet induced obese mice and has effects on various lymphocytes, the aim of this paper was to determine if lymphocytes, particularly NK cells, play a role in IL-15 mediated weight loss. Acute IL-15 treatment resulted in an increased accumulation of NK, NKT, and CD3(+) T cells in adipose tissue of B6 mice. Mice depleted of NK and NKT cells had similar weight loss comparable to controls treated with IL-15. Finally, IL-15 treatment induces significant weight loss in lymphocyte deficient RAG2(-/-)γc(-/-) mice independent of food intake. Fat pad cross-sections show decreased pad size with cytokine treatment is due to adipocyte shrinkage. These results clearly suggest that IL-15 mediates weight loss independent of lymphocytes.
    PLoS ONE 01/2012; 7(6):e39553. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin 15 (IL-15) has recently been proposed as a myokine involved in regulating lipid metabolism. We investigated the effect of exercise training on IL-15 content in skeletal muscle and expression of IL-15 receptor (IL-15R) in adipose tissue of obese rats. After 12 weeks of a high-fat diet, obese rats underwent treadmill running at 26 m/min (60 min each, 5 days/week for 8 weeks). High-fat diet induced obesity, with increased body weight, body fat, and lipid profile. The level of IL-15 immunoreactivity (IL-15-ir) in plasma and gastrocnemius muscle was lower in obese than control rats, and the mRNA level of IL-15 in gastrocnemius muscle was markedly decreased. The mRNA and protein levels of IL-15R in adipose tissue were markedly lower in obese rats. Compared with sedentary obese rats, treadmill running showed decreased body weight and elevated mRNA expression of IL-15 in muscle and elevated IL-15-ir level in plasma and muscle. The mRNA and protein level of IL-15R were increased in adipose tissue in treadmill running obese rats. Our results showed that exercise training improve obesity and reversed the downregulation of the IL-15 in muscle and IL-15R in adipose tissue induced by high-fat diet.
    Endocrine 10/2012; · 3.53 Impact Factor