Article

TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis

Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, France.
Cell metabolism (Impact Factor: 16.75). 10/2009; 10(3):167-77. DOI: 10.1016/j.cmet.2009.08.001
Source: PubMed

ABSTRACT TGR5 is a G protein-coupled receptor expressed in brown adipose tissue and muscle, where its activation by bile acids triggers an increase in energy expenditure and attenuates diet-induced obesity. Using a combination of pharmacological and genetic gain- and loss-of-function studies in vivo, we show here that TGR5 signaling induces intestinal glucagon-like peptide-1 (GLP-1) release, leading to improved liver and pancreatic function and enhanced glucose tolerance in obese mice. In addition, we show that the induction of GLP-1 release in enteroendocrine cells by 6alpha-ethyl-23(S)-methyl-cholic acid (EMCA, INT-777), a specific TGR5 agonist, is linked to an increase of the intracellular ATP/ADP ratio and a subsequent rise in intracellular calcium mobilization. Altogether, these data show that the TGR5 signaling pathway is critical in regulating intestinal GLP-1 secretion in vivo, and suggest that pharmacological targeting of TGR5 may constitute a promising incretin-based strategy for the treatment of diabesity and associated metabolic disorders.

Download full-text

Full-text

Available from: Antonio Macchiarulo, Jun 28, 2015
1 Follower
 · 
242 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bile salts are steroidal biosurfactants. Micellar systems of bile salts are not only important for solubilisation of cholesterol, but they interact with certain drugs changing thus their bioavailability. The number-average aggregation numbers (n¯) are determined using Moroi-Matsuoka-Sugioka thermodynamic method. Critical micellar concentrations were determined by spectrofluorometric method using pyren and by surface tension measurements. Micelles of ethylidene derivatives posess folowing values for n¯: 7-Eth-D (n¯=11 (50mM) - n¯=14.8 (100mM); 12-Ox-7-Eth-L (n¯≈8.8, without concentration dependence) and 7,12-diOx-3-Eth-Ch (n¯≈2.9,without concentration dependence). In the planes n¯ - ln k and ln CMC - ln k derivative 7-Eth-D is outlier in respect to hydrophobic linear congeneric groups. Gibbs energy of formation for 7-Eth-D anion micelles in adition to the Gibbs energy of hydrophobic interactions consist excess Gibbs energy (G(E)) from hydrogen bond formation between building blocks of micelles. Gibbs energy of formation for 12-diOx-3-Eth-Ch and 12-Ox-7-Eth-L anion micelle is determined by the Gibbs energy of hydrophobic interactions. Relative increase in hydrophobicity and aggregation number for ethylidene derivatives is larger when ethylidene group is introduced from C7 lateral side of steroidal skeleton then it is when ethylidene group is on C3 carbon. Position of outlier towards hydrophobic congeneric groups from n¯ - ln k and ln CMC - ln k planes indicates the existence of excess Gibbs energy (G(E)) which is not of hydrophobic nature (formation of hydrogen bonds). For the bile salts micelles to have G(E) (formation of secondary micelles) it is necessary that steroidal skeleton possess C3-α-(e)-OH and C12-α-(a)-OH groups. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta 03/2015; 1850(7). DOI:10.1016/j.bbagen.2015.03.010 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrahepatic granuloma formation and fibrosis characterize the pathological features of Schistosoma mansoni (S.m.) infection. Based on previously observed substantial anti-fibrotic effects of 24-nor-ursodeoxycholic acid (norUDCA) in Abcb4/Mdr2(-/-)mice with cholestatic liver injury and biliary fibrosis, we hypothesized that norUDCA improves inflammation-driven liver fibrosis in S.m. infection. Adult NMRI mice were infected with 50 S.m. cercariae and after 12 weeks received either norUDCA- or ursodeoxycholic acid (UDCA)-enriched diet (0.5% wt/wt) for 4 weeks. Bile acid effects on liver histology, serum biochemistry, key regulatory cytokines, hepatic hydroxyproline content as well as granuloma formation were compared to naive mice and infected controls. In addition, effects of norUDCA on, primary T-cell activation/proliferation and maturation of the antigen-presenting-cells (dendritic cells, macrophages) were determined in vitro. UDCA as well as norUDCA attenuated the inflammatory response in livers of S.m. infected mice but exclusively norUDCA changed cellular composition and reduced size and of hepatic granulomas as well as TH2-mediated hepatic fibrosis in vivo. Moreover norUDCA affected surface expression level of major histocompatibility complex (MHC) class II of macrophages and dendritic cells as well as activation/proliferation of T-lymphocytes in vitro, whereas UDCA had no effect. This study demonstrates pronounced anti-inflammatory and anti-fibrotic effects of norUDCA compared to UDCA in S.m. induced liver injury and indicates that norUDCA directly represses antigen presentation of antigen presenting cells and subsequent T-cell activation in vitro. Therefore norUDCA represents a promising drug for the treatment of this important cause of liver fibrosis. Copyright © 2014. Published by Elsevier B.V.
    Journal of Hepatology 11/2014; DOI:10.1016/j.jhep.2014.11.020 · 10.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a disease that develops as a result of long-term positive energy balance. In recent years, the influence of gut microflora composition, as a potential factor affecting the energy balance and contributing to fat accumulation, has been studied. It seems that bacteria can affect host energy balance through several mechanisms, such as increased fermentation of undigested polysaccharides and obtaining extra energy from the portion of food, reduced expression of FIAF (fasting-induced adipocyte factor) in the enterocytes with inhibitory activity towards intestinal lipoprotein lipase, and the increased release of peptide YY that slows the intestinal motility. It is also believed that changes in the composition of gut microflora may be one of the factors that induce systemic microinflammation in the obese, an important link in the pathogenesis of obesity related complications, including dyslipidaemia, hypertension and type 2 diabetes. However, the results of previous studies are inconclusive. Many of them have been carried out in an animal model and were not confirmed in studies involving humans. These discrepancies may be due to different composition of the diet, distinct physiological gut microflora and the methodology used in these studies. The present article reviews the current literature on the potential role of gut microflora in the pathogenesis of obesity.
    Postępy Higieny i Medycyny Doświadczalnej (Advances in Hygiene and Experimental Medicine) 01/2014; 68:84-90. DOI:10.5604/17322693.1086419 · 0.63 Impact Factor