Article

Hypocretin/Orexin neuropeptides: participation in the control of sleep-wakefulness cycle and energy homeostasis.

Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
Current Neuropharmacology (Impact Factor: 2.03). 04/2009; 7(1):50-9. DOI: 10.2174/157015909787602797
Source: PubMed

ABSTRACT Hypocretins or orexins (Hcrt/Orx) are hypothalamic neuropeptides that are synthesized by neurons located mainly in the perifornical area of the posterolateral hypothalamus. These hypothalamic neurons are the origin of an extensive and divergent projection system innervating numerous structures of the central nervous system. In recent years it has become clear that these neuropeptides are involved in the regulation of many organic functions, such as feeding, thermoregulation and neuroendocrine and cardiovascular control, as well as in the control of the sleep-wakefulness cycle. In this respect, Hcrt/Orx activate two subtypes of G protein-coupled receptors (Hcrt/Orx1R and Hcrt/Orx2R) that show a partly segregated and prominent distribution in neural structures involved in sleep-wakefulness regulation. Wakefulness-enhancing and/or sleep-suppressing actions of Hcrt/Orx have been reported in specific areas of the brainstem. Moreover, presently there are animal models of human narcolepsy consisting in modifications of Hcrt/Orx receptors or absence of these peptides. This strongly suggests that narcolepsy is the direct consequence of a hypofunction of the Hcrt/Orx system, which is most likely due to Hcrt/Orx neurons degeneration.The main focus of this review is to update and illustrate the available data on the actions of Hcrt/Orx neuropeptides with special interest in their participation in the control of the sleep-wakefulness cycle and the regulation of energy homeostasis. Current pharmacological treatment of narcolepsy is also discussed.

0 Bookmarks
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two experiments used vivo morpholinos to assess the role of orexin/hypocretin in ABA renewal of extinguished alcohol seeking. Rats were trained to respond for alcoholic beer in a distinctive context, A, and then extinguished in a second distinctive context, B. When rats were tested in the extinction context, ABB, responding was low but when they were tested in the training context, ABA, responding was significantly higher. Microinjection of an orexin/hypocretin antisense vivo morpholino into LH significantly reduced orexin/hypocretin protein expression but had no effect on the ABA renewal of alcohol seeking (Experiment 1). Microinjection of a higher dose of the antisense vivo morpholino into LH also significantly reduced orexin/hypocretin protein expression but this was not selective and yielded significant reduction in melanin -concentrating hormone (MCH) protein expression. This non-selective knockdown did significantly reduce ABA renewal as well as reduce the reacquisition of alcohol seeking. Taken together, these findings show an important role for LH in the ABA renewal of alcohol seeking but that orexin/hypocretin is not necessary for this renewal.
    PLoS ONE 01/2014; 9(10):e110385. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Narcolepsy is a chronic lifelong sleep disorder and it often leaves a debilitating effect on the quality of life of the sufferer. This disorder is characterized by a tetrad of excessive daytime sleepiness, cataplexy (brief loss of muscle tone following strong emotion), hypnogogic hallucinations and sleep paralysis. There are two distinct subgroups of Narcolepsy: Narcolepsy with cataplexy and Narcolepsy without cataplexy. For over 100 years, clinicians have recognised narcolepsy, but only in the last few decades have scientists been able to shed light on the true cause and pathogenesis of narcolepsy. Recent studies have shown that a loss of the hypothalamic neuropeptide Hypocretin/Orexincauses Narcolepsy with cataplexy and that an autoimmune mechanism may be responsible for this loss. Our understanding of the neurophysiologic aspect of narcolepsy has also significantly improved. The basic neural mechanisms behind sleepiness and cataplexy, the two defining symptoms of narcolepsy have started to become clearer. In this review, we have provided a detailed account of the key aspects of etiopathogenesis and neurobiology of narcolepsy, along with a critical appraisal of the more recent and interesting causal associations.We have also looked at the contributions of neuroimaging to the etiopathogenesis of Narcolepsy.
    Journal of clinical and diagnostic research : JCDR. 02/2014; 8(2):190-195.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Sleep quality and genetics may contribute to the etiology of gastrointestinal (GI) symptoms. Individuals with impaired sleep often have a number of associated symptoms including chronic abdominal pain (CAP). The current study examined the interactions of brain-derived neurotrophic factor (BDNF) genotype with sleep quality in persons with CAP and healthy controls. In addition, associations among sleep quality, BDNF genotype, and gene expression were explored in the participants.Methods Data were collected on 59 participants (46% male, 61% White, 26.9¿±¿6.6 years; CAP (n=19) and healthy controls (n=40)). Participants with CAP reported poorer sleep quality compared to healthy controls. BDNF genotype, categorized as Val/Val homozygotes versus the Met carriers was not associated with sleep quality or CAP.ResultsMicroarray analysis found twenty-four differentially expressed genes by a two-fold magnitude in participants with poor sleep quality compared to good sleep quality, and seven differentially expressed genes comparing CAP to healthy control. Three specific genes in the pain group overlap with sleep quality, including insulin-like growth factor 1 (IGF1), spermatogenesis associated serine-rich 2-like (SPATS2L), and immunoglobulin heavy constant gamma 1 or mu (IGHG1/// IGHM). BDNF was shown to have an interaction effect with GI and sleep symptoms.Conclusions Participants with CAP reported poor sleep quality compared to healthy controls. The role of the BDNF Met allele on differential gene expression was not distinct as main factor, but impacted interactions with sleep quality and CAP. Down-regulation of IGF1, SPATS2L, and IGHG1 expression may be related to the etiology of poor sleep quality and CAP. Trial registration: Clinicaltrial.gov#NCT00824941.
    BMC Medical Genomics 10/2014; 7(1):61. · 3.91 Impact Factor

Full-text (2 Sources)

Download
41 Downloads
Available from
Jun 6, 2014