Article

Time gate, optical layout, and wavelength effects on ballistic imaging.

UMR 6614-CORIA, CNRS, Université et INSA de Rouen, BP12, Avenue de l'Université, 76801 Saint-Etienne du Rouvray Cedex, France.
Journal of the Optical Society of America A (Impact Factor: 1.45). 10/2009; 26(9):1995-2004. DOI: 10.1364/JOSAA.26.001995
Source: PubMed

ABSTRACT A method to distinguish a hidden object from a perturbing environment is to use an ultrashort femtosecond pulse of light and a time-resolved detection. To separate ballistic light containing information on a hidden object from multiscattered light coming from the surrounding environment that scrambles the signal, an optical Kerr gate can be used. It consists of a carbon disulfide (CS(2)) cell in which birefringence is optically induced. An imaging beam passes through the studied medium while a pump pulse is used to open the gate. The time-delayed scattered light is excluded from measurements by the gate, and the multiple-scattering scrambling effect is reduced. In previous works, the two beams had the same wavelength. We propose a new two-color experimental setup for ballistic imaging in which a second harmonic is generated and used for the image, while the fundamental is used for gate switching. This setup allows one to obtain better resolution by using a spectral filtering to eliminate noise from the pump pulse, instead of a spatial filtering. This new setup is suitable for use in ballistic imaging of dense sprays, multidiffusive, and large enough to show scattered light time delays greater than the gate duration (tau=1.3 ps).

0 Followers
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imaging with ultrashort exposure times is generally achieved with a crossed-beam geometry. In the usual arrangement, an off-axis gating pulse induces birefringence in a medium exhibiting a strong Kerr response (commonly carbon disulfide) which is followed by a polarizer aligned to fully attenuate the on-axis imaging beam. By properly timing the gate pulse, imaging light experiences a polarization change allowing time-dependent transmission through the polarizer to form an ultrashort image. The crossed-beam system is effective in generating short gate times, however, signal transmission through the system is complicated by the crossing angle of the gate and imaging beams. This work presents a robust ultrafast time-gated imaging scheme based on a combination of type-I frequency doubling and a collinear optical arrangement in carbon disulfide. We discuss spatial effects arising from crossed-beam Kerr gating, and examine the imaging spatial resolution and transmission timing affected by collinear activation of the Kerr medium, which eliminates crossing angle spatial effects and produces gate times on the order of 1 ps. In addition, the collinear, two-color system is applied to image structure in an optical fiber and a gasoline fuel spray, in order to demonstrate image formation utilizing ballistic or refracted light, selected on the basis of its transmission time.
    Optics Express 06/2014; 22(13):15778-15790. DOI:10.1364/OE.22.015778 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a collinear optical Kerr effect (OKE) based time-gate configuration with low coherence illumination source, derived from the supercontinuum (SC) generated by focusing the femtosecond laser pulses inside water. At first the spectral broadening in SC generation and corresponding changes in its coherence properties are studied and then a narrow band of wavelengths is extracted to use as the probe beam in the OKE-based time-gate configuration. The gate timings and spatial resolution of the time-gated images are also investigated. The low coherence of the probe ensures that the artifacts due to speckles from the laser are reduced to a minimum. To illustrate this a comparison of the time-resolved images of the fuel sprays obtained with this configuration has been made with the images obtained with the collinear, dual color configuration of the optical gate with coherent illumination.
  • Source